K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2023

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2+6^2=10^2\)

=>\(AC^2=100-36=64\)

=>\(AC=\sqrt{64}=8\left(cm\right)\)

b: Xét tứ giác ADME có

AD//ME

AE//MD

Do đó: ADME là hình bình hành

Hình bình hành ADME có \(\widehat{DAE}=90^0\)

nên ADME là hình chữ nhật

c: Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

Xét ΔABC có

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình của ΔABC

=>DE//BC và \(DE=\dfrac{1}{2}BC\)

Ta có: DE//BC

M\(\in\)BC

Do đó: DE//MB

Ta có: \(DE=\dfrac{1}{2}BC\)

\(MC=MB=\dfrac{1}{2}BC\)

Do đó: DE=MC=MB

Xét tứ giác BDEM có

DE//MB

DE=MB

Do đó: BDEM là hình bình hành

d: Xét tứ giác ABCK có

E là trung điểm chung của AC và BK

=>ABCK là hình bình hành

=>AK//BC

Xét tứ giác AMCI có

E là trung điểm chung của AC và MI

=>AMCI là hình bình hành

=>AI//CM

=>AI//BC

Ta có: AI//BC

AK//BC

AI,AK có điểm chung là A

Do đó: A,I,K thẳng hàng

8 tháng 1 2020

giúp mk vs. Mk mai thi rồi

8 tháng 1 2020

image

b) Xét 2 \(\Delta\) \(ABM\)\(DCM\) có:

\(AM=DM\left(gt\right)\)

\(\widehat{AMB}=\widehat{DMC}\) (vì 2 góc đối đỉnh)

\(BM=CM\) (vì M là trung điểm của \(BC\))

=> \(\Delta ABM=\Delta DCM\left(c-g-c\right)\)

=> \(\widehat{ABM}=\widehat{DCM}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AB\) // \(CD.\)

Chúc bạn học tốt!

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

Xét ΔAMB vuông tại M và ΔDMC vuông tại M có

MA=MD

MB=MC

Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

mà AB=AC

nên ABDC là hình thoi

=>AB//DC
c: Vì ABDC là hình thoi

nên CA=CD

3 tháng 10 2015

A B C M E D 1 2 3 4 1 2

+) ME // AC => góc C = góc M1 ( 2 góc đồng vị)  và góc A2 = M(2 góc SLT)
+) MD // AB => góc B = góc M4 ( 2 góc đồng vị) và góc A1 = góc M3 ( 2 góc SLT)

=> góc A + góc B + góc C = góc A1 + A+ B + C = M+ M+ M+ M= góc BMC = 180o

Vậy.............