Cho\(\Delta\)ABC cân (AB=AC=a). M\(\in\)BC. Vẽ MD song song với AC (D\(\in\)AB); ME song song với AB (E\(\in\)AC)
a) Chứng minh \(\frac{AD}{AB}+\frac{AE}{AC}=1.\)Tính chu vi tứ giác AEMD
b)Tìm vị trí của M trên BC để DE có độ dài nhỏ nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2+6^2=10^2\)
=>\(AC^2=100-36=64\)
=>\(AC=\sqrt{64}=8\left(cm\right)\)
b: Xét tứ giác ADME có
AD//ME
AE//MD
Do đó: ADME là hình bình hành
Hình bình hành ADME có \(\widehat{DAE}=90^0\)
nên ADME là hình chữ nhật
c: Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình của ΔABC
=>DE//BC và \(DE=\dfrac{1}{2}BC\)
Ta có: DE//BC
M\(\in\)BC
Do đó: DE//MB
Ta có: \(DE=\dfrac{1}{2}BC\)
\(MC=MB=\dfrac{1}{2}BC\)
Do đó: DE=MC=MB
Xét tứ giác BDEM có
DE//MB
DE=MB
Do đó: BDEM là hình bình hành
d: Xét tứ giác ABCK có
E là trung điểm chung của AC và BK
=>ABCK là hình bình hành
=>AK//BC
Xét tứ giác AMCI có
E là trung điểm chung của AC và MI
=>AMCI là hình bình hành
=>AI//CM
=>AI//BC
Ta có: AI//BC
AK//BC
AI,AK có điểm chung là A
Do đó: A,I,K thẳng hàng
b) Xét 2 \(\Delta\) \(ABM\) và \(DCM\) có:
\(AM=DM\left(gt\right)\)
\(\widehat{AMB}=\widehat{DMC}\) (vì 2 góc đối đỉnh)
\(BM=CM\) (vì M là trung điểm của \(BC\))
=> \(\Delta ABM=\Delta DCM\left(c-g-c\right)\)
=> \(\widehat{ABM}=\widehat{DCM}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AB\) // \(CD.\)
Chúc bạn học tốt!
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Xét ΔAMB vuông tại M và ΔDMC vuông tại M có
MA=MD
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
mà AB=AC
nên ABDC là hình thoi
=>AB//DC
c: Vì ABDC là hình thoi
nên CA=CD
A B C M E D 1 2 3 4 1 2
+) ME // AC => góc C = góc M1 ( 2 góc đồng vị) và góc A2 = M2 (2 góc SLT)
+) MD // AB => góc B = góc M4 ( 2 góc đồng vị) và góc A1 = góc M3 ( 2 góc SLT)
=> góc A + góc B + góc C = góc A1 + A2 + B + C = M3 + M2 + M1 + M4 = góc BMC = 180o
Vậy.............