K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 3

Lời giải:

a/ Xét tam giác $BKA$ và $CKD$ có:
$BK=CK$ (do $K$ là trung điểm $BC$)
$KA=KD$ 

$\widehat{BKA}=\widehat{CKD}$ (đối đỉnh)

$\Rightarrow \triangle BKA=\triangle CKD$ (c.g.c)

$\Rightarrow \widehat{BAK}=\widehat{CDK}$. Mà hai góc này ở vị trí so le trong nên $CD\parallel AB$

b.

Từ $CD\parallel AB, AB\perp AC$ nên $CD\perp AC$

$\Rightarrow \widehat{DCH}=90^0$

Từ $\triangle BKA=\triangle CKD\Rightarrow AB=CD$

Xét tam giác $BAH$ và $DCH$ có:

$AH=CH$ 
$AB=CD$

$\widehat{BAH}=\widehat{DCH}=90^0$

$\Rightarrow \triangle BAH=\triangle DCH$ (c.g.c)

$\Rightarrow \widehat{H_1}=\widehat{H_2}$
Xét tam giác $BAC$ và $DCA$ có:

$AB=CD$

$\widehat{BAC}=\widehat{DCA}=90^0$

$AC$ chung

$\Rightarrow \triangle BAC=\triangle DCA$ (c.g.c)

$\Rightarrow \widehat{A_1}=\widehat{C_1}$
Xét tam giác $AMH$ và $CNH$ có:

$\widehat{A_1}=\widehat{C_1}$
$\widehat{H_1}=\widehat{H_2}$

$AH=CH$ 

$\Rightarrow \triangle AMH=\triangle CNH$ (g.c.g)

$\Rightarrow MH=NH$

$\Rightarrow MNH$ cân tại $H$

c.

Từ $\triangle BAC=\triangle DCA\Rightarrow BC=DA\Rightarrow BC:2=DA:2\Rightarrow CK=AK$

Xét tam giác $KHA$ và $KHC$ có:

$KH$ chung

$AK=CK$

$AH=CH$

$\Rightarrow \triangle KHA=\triangle KHC$ (c.c.c)

$\Rightarrow \widehat{AKH}=\widehat{CKH}$

$\Rightarrow KH$ là phân giác $\widehat{AKC}$

AH
Akai Haruma
Giáo viên
31 tháng 3

Hình vẽ:

5 tháng 4 2022

sửa đề nha

cho tam giác ABC vuông tại A , trên tia đối tia AB lấy đỉnh M sao cho AB=AM a. CMR : tam giác ABC = tam giác AMC

b. kẻ AH vuông góc với BC tại H kẻ AK vuông gói với MC tại K CMR : BH = MK

c. CMR : HK // BM

 

5 tháng 4 2022

Xét \(\Delta BACvà\Delta MACcó\)

AC:chung 

AM=AB(gt)

\(\widehat{MAC}=\widehat{BAC}\)( vì AC⊥BC)

10 tháng 8 2016

bài này khó quá bạn ạ

12 tháng 8 2016

bạn lên học 24 đi nhiều người giỏi lắm . t hen