K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

cho tam giac ABC co 3 goc nhon(AB<AC). Cac duong cao AD,BE,CF cua tam giac cat nhau tai H. Goi I la trung diem cua AH.                                            a)Chung minh:BCEF va CDHE la tu giac noi tiep.                                              b)Chung minh:EB la phan giac cua goc FED va Tam giacBEF dong dang voi tam giacDHE.                                                                                                      c)Goi O la tam duong tron ngoai tiep tu giac BCEF. Chung...
Đọc tiếp

cho tam giac ABC co 3 goc nhon(AB<AC). Cac duong cao AD,BE,CF cua tam giac cat nhau tai H. Goi I la trung diem cua AH.                                            a)Chung minh:BCEF va CDHE la tu giac noi tiep.                                              b)Chung minh:EB la phan giac cua goc FED va Tam giacBEF dong dang voi tam giacDHE.                                                                                                      c)Goi O la tam duong tron ngoai tiep tu giac BCEF. Chung minh:IE la tiep tuyen cua duong tron (O).                                                                                  d)Ve CI cat (O) tai M (M khac C), EF cat AD tai K. Chung minh 3 diem B,K,M thang hang

...giai ho cau c,d

1

a: Xét tư giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC là tứ giác nội tiếp

Xét tứ giác CDHE có

góc CDH+góc CEH=180 độ

=>CDHE là tứ giác nội tiếp

b: CDHE là tứ giác nội tiếp

=>gó BED=góc FCB

góc FEH=góc BAD

mà góc FCB=góc BAD

nên góc BED=góc FEB

=>EB là phân giác của góc FED

c: góc IEO=góc IEH+góc OEH

=góc IHE+góc OBE

=góc BHD+góc CBH=90 độ

=>IE là tiếp tuyến của (O)

a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)

b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có

\(\widehat{EBF}=\widehat{EDC}\)

Do đó: ΔEBF\(\sim\)ΔEDC

d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

Suy ra: BA=BE và DA=DE

Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

DO đó: ΔADF=ΔEDC

Suy ra: AF=EC

=>BF=BC

=>ΔBFC cân tại B

mà BD là đường phân giác

nên BD la đường cao

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

b: góc AHG=góc BHD=90 độ-góc HBD=góc ACB

góc AGH=1/2*sđ cung AB=góc ACB

=>góc AHG=góc AGH

=>ΔAGH cân tại A

17 tháng 8 2023

loading... 1.

a) Do ∆ABC cân tại A (gt)

⇒ AB = AC và ∠ABC = ∠ACB (1)

Do BE là đường trung tuyến của ∆ABC (gt)

⇒ E là trung điểm của AC

⇒ AE = CE = AC/2   (2) 

Do CF là đường trung tuyến của ∆ABC (gt)

⇒ F là trung điểm của AB

⇒ AF = BF = AB/2   (3)

Từ (1), (2) và (3) ⇒ BF = CE

Do ∠ABC = ∠ACB (cmt)

⇒ ∠FBC = ∠ECB

Xét ∆BFC và ∆CEB có:

BF = CE (cmt)

∠FBC = ∠ECB (cmt)

BC chung

⇒ ∆BFC = ∆CEB (c-g-c)

⇒ CF = BE (hai cạnh tương ứng)

Hay BE = CF

b) Do ∆BFC = ∆CEB (cmt)

⇒ ∠BCF = ∠CBE (hai góc tương ứng)

⇒ ∠BCK = ∠CBK

∆BKC có:

∠BCK = ∠CBK (cmt)

⇒ ∆BKC cân tại K

c) Do ∆BKC cân tại K (cmt)

⇒ BK = CK

Do ∠ABC = ∠ACB (cmt)

⇒ ∠ABK = ∠ABC - ∠CBK = ∠ACB - ∠BCK = ∠ACK

⇒ ∠FBK = ∠ECK

Xét ∆BFK và ∆CEK có:

BK = CK (cmt)

∠FBK = ∠CEK (cmt)

BF = CE (cmt)

⇒ ∆BFK = ∆CEK (c-g-c)

⇒ FK = EK (hai cạnh tương ứng)

d) Sửa đề: Chứng minh ∆BFK = ∆CEK

Xét ∆BFK và ∆CEK có:

BK = CK (cmt)

BF = CE (cmt)

FK = EK (cmt)

⇒ ∆BFK = ∆CEK (c-c-c)

2.

a) Từ (1), (2) và (3) ⇒ AF = AE

∆AEF có:

AE = AF (cmt)

⇒ ∆AEF cân tại A

b) Do ∆ABC cân tại A (gt)

⇒ ∠ABC = ∠ACB = (180⁰ - ∠BAC) : 2  (4)

Do ∆AEF cân tại A (cmt)

⇒ ∠AFE = ∠AEF = (180⁰ - ∠FAE) : 2

⇒ ∠AFE = ∠AEF = (180⁰ - ∠BAC) : 2  (5)

Từ (4) và (5) ⇒ ∠ABC = ∠AFE

Mà ∠ABC và ∠AFE là hai góc đồng vị

⇒ EF // BC

c) Xét ∆AFK và ∆AEK có:

AF = AE (cmt)

AK chung

FK = EK (cmt)

⇒ ∆AFK = ∆AEK (c-c-c)