K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2018

A B C I H K

a)

_ Xét \(\Delta\) AKC và \(\Delta\) AHI có :

+ góc AKC = gócÂHB = 90o

+ A là góc chung

+ AB = AC ( gt )

=> \(\Delta\)AHB = \(\Delta\) AKC ( g.c.g)

=> AH = AK ( đpcm )

b)

_ Xét \(\Delta\) AKI và \(\Delta\) AHI có

+ góc AKI = góc AHI = 900

+ AH = AK ( c/m trên )

+ AI là cạnh chung

=> \(\Delta\) AKI = \(\Delta\) AHI ( cạnh huyền - cạnh góc vuông )

=> góc KAI = gócHAI ( 2 góc tương ứng )

c)

_ Xét \(\Delta\) ABD và \(\Delta\) ACD có :

+ AB = AC ( gt )

+ AD chung

+ góc ADB = góc ACD = 90o

=> \(\Delta\)ABD = \(\Delta\) ACD ( cạnh huyền - cạnh góc vuông )

=> AI \(\perp\) BC

Còn lại k biết lm

a) Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC(ΔABC cân tại A)

\(\widehat{A}\) chung

Do đó: ΔABH=ΔACK(cạnh huyền-góc nhọn)

b) Ta có: ΔABH=ΔACK(cmt)

⇒AH=AK(hai cạnh tương ứng)

Ta có: AK+KB=AB(do K∈AB)

AH+HC=AC(do H∈AC)

mà AB=AC(do ΔABC cân tại A)

và AH=AK(cmt)

nên KB=HC

Xét ΔKBI vuông tại K có

\(\widehat{KIB}+\widehat{IBK}=90^0\)(hai góc phụ nhau)(1)

Xét ΔHIC vuông tại H có

\(\widehat{HIC}+\widehat{HCI}=90^0\)(hai góc phụ nhau)(2)

Từ (1) và (2) suy ra

\(\widehat{KIB}+\widehat{IBK}=\widehat{HIC}+\widehat{HCI}\)

\(\widehat{KIB}=\widehat{HIC}\)(hai góc đối đỉnh)

nên \(\widehat{KBI}=\widehat{HCI}\)

Xét ΔKIB vuông tại K và ΔHIC vuông tại H có

KB=HC(cmt)

\(\widehat{KBI}=\widehat{HCI}\)(cmt)

Do đó: ΔKIB=ΔHIC(cạnh góc vuông-góc nhọn kề)

⇒IB=IC(hai cạnh tương ứng)

c) Xét ΔAIK vuông tại K và ΔAIH vuông tại H có

AI là cạnh chung

AK=AH(cmt)

Do đó: ΔAIK=ΔAIH(cạnh huyền-cạnh góc vuông)

\(\widehat{KAI}=\widehat{HAI}\)(hai góc tương ứng)

mà tia AI nằm giữa hai tia AK,AH

nên AI là tia phân giác của \(\widehat{KAH}\)

hay AI là tia phân giác của \(\widehat{BAC}\)

Ta có: AI là đường phân giác ứng với cạnh đáy BC của ΔABC cân tại A(do AI là tia phân giác của \(\widehat{BAC}\))

nên AI cũng là đường cao ứng với cạnh BC của ΔABC cân tại A(định lí tam giác cân)

⇒AI⊥BC(đpcm)

18 tháng 8 2023

A B C H D E F M K N

a/

\(BH\perp AC\Rightarrow HF\perp AC;ME\perp AC\) => ME//HF

\(AC\perp AB\Rightarrow EH\perp HF;MF\perp BH\Rightarrow MF\perp HF\) => EH//MF

=> MEHF là hình bình hành (tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh) => ME=HF (cạnh đối hbh)

b/

\(\widehat{BMD}+\widehat{ABC}=90^o\)

\(\widehat{CME}+\widehat{ACB}=90^o\)

\(\widehat{ABC}=\widehat{ACB}\) (góc ở đáy tg cân)

\(\Rightarrow\widehat{BMD}=\widehat{CME}\)

Mà \(\widehat{CME}=\widehat{CBH}\) (góc đồng vị)

\(\Rightarrow\widehat{BMD}=\widehat{CBH}\)

Xét tg vuông DBM và tg vuông FMB có

\(\widehat{BMD}=\widehat{CBH}\) 

BM chung 

=> tg DBM = tg FMB (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)

c/

Ta có ME = HF (cmt)

tg DBM = tg FMB (cmt) => MD = BF

=> MD+ME=BF+HF=BH không đổi

d/

Từ D dựng đt // AC cắt BC tại N

\(\Rightarrow\widehat{BND}=\widehat{ACB}\) Góc đồng vị)

\(\widehat{ABC}=\widehat{ACB}\)

=> \(\widehat{BND}=\widehat{ABC}\) => tg DBN cân tại D => BD=ND (1)

tg DBM = tg FMB (cmt) => BD=MF (2)

Mà MF = EH (cạnh đối hbh) (3)

Mà EH = KC (4)

Từ (1) (2) (3) (4) => ND = KC

Mà ND//AC => ND//KC

=> DEKN là hbh (Tứ giác có 1 cặp cạnh đối // và bằng nhau là hbh)

Mà DK và NC là hai đường chéo của hbh cắt nhau tại trung điểm mỗi đường => trung điểm của KD nằm trên NC mà NC thuộc BC => trung điểm KD nằm trên BC

 

 

 

21 tháng 8 2023

a) Vẽ MH, rõ ràng HEMF có tổng số đo của 4 góc là 360o (vì tổng số đo của 4 góc đó là tổng số đo của các góc của các tam giác FMH và EMH)

Mà theo giả thuyết \(MD\perp AB\)\(ME\perp AC\) và \(MF\perp BH\) nên \(MF\perp ME\). Suy ra HEMF là hình chữ nhật, từ đó ME = HF.

b) Ta có \(\widehat{ABM}=\widehat{ACM}\) (vì tam giác ABC cân tại A) và \(\widehat{FMB}=\widehat{ACM}\) (vì hai góc đồng vị và AC//MF vì \(ME\perp AC\) và \(MF\perp ME\)), suy ra \(\widehat{ABM}=\widehat{FMB}\).

Xét tam giác DBM vuông tại D và FMB vuông tại F có BM là cạnh chung và \(\widehat{ABM}=\widehat{FMB}\), suy ra ΔDBM = ΔFMB (cạnh huyền - góc nhọn)

c) Từ a) và b) suy ra MD = BF, MD + ME = BF + FH = BH. Vậy khi M chạy trên đáy BC thì tổng MD + ME có giá trị không đổi.

16 tháng 4 2020

sửa lại : 

Cho tam giác ABC cân tại A, \(\widehat{A}=30^o\). Vẽ BH ⊥ AC (H ∈ AC), CK ⊥  AB (K ∈ AB).

Gọi I là giao điểm của BH và CK.

Tính số đo góc \(\widehat{BAI}\)

giải:

ta có : \(\Delta ABC\)cân tại A

=> AB=AC(t/c \(\Delta\)cân)

xét \(\Delta BAH\)\(\Delta CAK\)

\(\widehat{A}-chung\)

AB=AC

\(\widehat{AKC}=\widehat{AHB}=90^o\)

=>\(\Delta BAH\)=\(\Delta CAK\)(ch-gn)

=>\(\widehat{ABH}=\widehat{ACK}\left(2ctu\right)\)

=>\(\widehat{ABI}=\widehat{ACI}\)

xét \(\Delta ABI\)VÀ \(\Delta ACI\)

AB=AC(cmt)

\(\widehat{ABI}=\widehat{ACI}\)(cmt)

AI-cạnh chung

=>\(\Delta ABI\)=\(\Delta ACI\)(cgc)

=>\(\widehat{BAI}=\widehat{CAI}\left(2gtu\right)\)

ta có : \(\widehat{BAI}+\widehat{CAI}=\widehat{A}=30^o\)

\(\widehat{BAI}=\widehat{CAI}\left(cmt\right)\)

=> \(\widehat{BAI}=\widehat{CAI}=15^o\)

a) Hai tam giác vuông ABH và ACK có:

AB = AC(gt)

Góc A chung.

nên ∆ABH = ∆ACK(Cạnh huyền- Góc nhọn)

suy ra AH = AK.

b) Hai tam giác vuông AIK và AIH có:

AK = AH(cmt)

AI cạnh chung

Nên ∆AIK = ∆AIH(cạnh huyền- cạnh góc vuông)

Suy ra ˆIAKIAK^=ˆIAHIAH^

Vậy AI là tia phân giác của góc A.

20 tháng 4 2017

a) Hai tam giác vuông ABH và ACH có:

Tam giác ABC cân tại A ⇒ AB = AC

AH cạnh chung.

Nên ∆ABH = ∆ACH(Cạnh huyền – cạnh góc vuông)

Suy ra HB = HC

b)∆ABH = ∆ACH (Câu a)

Suy ra ∠BAH = ∠CAH (Hai góc tương ứng)

6 tháng 4 2017

câu a theo hình của mình thì làm được rồi nhưng câu b mtheo hình của mình thì lại thấy kì kì bạn thử vẽ hình hộ mình được không

6 tháng 4 2017

a) Xét ΔADI và ΔAHI , có :

ID = IH ( I là trung điểm của DH )

IA chung

góc AID = góc AIH = 90o

=> ΔADI = ΔAHI (c.g.c)

LƯU Ý: MÌNH KHÔNG BIẾT VẼ HÌNH NÊN BẠN VẼ NHÉ 

Bài 1: DỰNG TAM GIÁC ĐỀU MBC ( M;A nằm trên cùng một nửa mặt phẳng bờ BC)

Xét tam giác MAB và tam giác MAC 

     MB=MC(tam giác MBC đều)

     Chung MA

     AB=AC(tam giác ABC cân tại A)

=> Tam giác MAB= tam giác MBC => góc BMA= góc CMA

=> góc BMA=30 độ

Xét tam giác BMA và tam giác BCD 

     góc BMA=BCD(=30)

     BM=BC(tam giác MBC đều)

     goc MBA=CBD(=10) (CHỖ NÀY BẠN KHÔNG HIỂU HỎI MK NHÉ )

=> tam giac BMA=BCD=>AB=DB=> tam giac BAD cân tại B . Lại có DBM=40

=> BAD=(180-40)/2=70

     

Bài 2: Dựng tam giác đều BCI( I;A cùng phía so với BC)

Xét tam giác BIA và tam giác CIA

     AB=AC ( ABC cân tại A)

     ABI=ACI(=10)

     BI=CI(do BIC đều)

=> tam giác BIA=CIA =>góc BAI=CAI=40/2=20

Tương tự ta chứng minh được tam giác ABI = tam giác DBC(c.g.c) ( NẾU HỎI MK SẼ NHẮN TRONG PHÂN CHAT)

Do đó BAI=BDC hay BDC=20

27 tháng 7 2019

Câu a), b), c) bạn tham khảo tại đây nhé: Câu hỏi của Sky Mtp

Còn câu d) thì ở đây nhé: Câu hỏi của Hana Huyền Ngọc

Chúc bạn học tốt!

15 tháng 4 2018

WOA  nhìn tên bạn là hết muốn làm luôn í