K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh:                       a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD                                b) AE.AC=AF.AB  và tam giác AEF đồng dạng tam giác ABC                                        c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC                                d)  EH là tia phân...
Đọc tiếp

tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh:                       a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD                                b) AE.AC=AF.AB  và tam giác AEF đồng dạng tam giác ABC                                        c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC                                d)  EH là tia phân giác của góc DEF                                                                          e) BF.BA + CE.CA=BC2                                                                                                                       f) HD/AD + HE/BE + HF/CF = 1                                                                                                                   g) góc IEG = 90

 

1
20 tháng 2 2021

bạn ghi thiếu đề kìa

22 tháng 4 2023

O x và y khác nhau ở điểm truc nên ta có phuong trình x +y bằng 65% tỉ lệ hành hóa

 

24 tháng 10 2021

Bài 2: 

a: Ta có: ΔABC cân tại A

mà AH là đường trung tuyến

nên AH là đường cao

b: Xét tứ giác BHAD có 

I là trung điểm của AB

I là trung điểm của HD

Do đó: BHAD là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên BHAD là hình chữ nhật

21 tháng 12 2021

a: Xét ΔABH và ΔACH có

AB=AC

AH chung

BH=CH

Do đó: ΔABH=ΔACH

21 tháng 12 2021

a: Xét ΔABH và ΔACH có

AB=AC

AH chung

BH=CH

Do đó: ΔABH=ΔACH

17 tháng 12 2023

Ta có: ΔEAH vuông tại E

mà EI là đường trung tuyến

nên IE=IH

=>ΔIEH cân tại I

=>\(\widehat{IHE}=\widehat{IEH}\)

mà \(\widehat{IHE}=\widehat{BHD}\)(hai góc đối đỉnh)

và \(\widehat{BHD}=\widehat{BCE}\left(=90^0-\widehat{EBC}\right)\)

 nên \(\widehat{IEH}=\widehat{BCE}\)

Ta có: ΔEBC vuông tại E

mà EO là đường trung tuyến

nên OE=OB

=>ΔOEB cân tại O

=>\(\widehat{OEB}=\widehat{OBE}\)

Ta có: \(\widehat{IEO}=\widehat{IEH}+\widehat{OEH}\)

\(=\widehat{EBC}+\widehat{ECB}=90^0\)

=>ΔIEO vuông tại E

Ta có: ΔAFH vuông tại F

mà FI là đường trung tuyến

nên FI=IH

=>FI=IE

=>I nằm trên đường trung trực của FE(1)

Ta có: ΔBFC vuông tại F

mà FO là đường trung tuyến

nên \(FO=\dfrac{BC}{2}\)

mà EO=BC/2

nên FO=EO

=>O nằm trên đường trung trực của EF(2)

Từ (1) và (2) suy ra IO là đường trung trực của EF

=>IO\(\perp\)EF tại K và K là trung điểm của FE

Xét ΔIEO vuông tại E có EK là đường cao

nên \(IK\cdot IO=IE^2\)

=>\(IK\cdot IO=\left(\dfrac{1}{2}AH\right)^2=\dfrac{1}{4}AH^2\)

=>\(AH^2=4\cdot IK\cdot IO\)