Bài 2. Cho tam giác nhọn ABC; AH vuông góc với BC tại H. Vẽ HM 1 AB tại
M; HN IAC tại N. Lấy các điểm D, E thứ tự thuộc tia đối của các tia MH và
NH sao cho MD =MH, NE = NH
a) Chứng minh AD = AE
b) DE cắt AB và AC thứ tự tại I và K. Chứng minh HA là tia phân giác của
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ HAI ĐỌC THẲNG AE VÀ BC CẮT NHAU TẠI H VÀ CÓ MỘT GÓC BẰNG 90
\(\Rightarrow\widehat{H_1}=\widehat{H_2}=\widehat{H_3}=\widehat{H_4}=90\)
XÉT \(\Delta BAH\)VÀ\(\Delta BEH\)CÓ
BH LÀ CẠNH CHUNG
\(\widehat{H_1}=\widehat{H_2}\left(CMT\right)\)
\(AH=EH\left(GT\right)\)
\(\Rightarrow\Delta BAH=\Delta BEH\left(C-G-C\right)\)
\(\Rightarrow AB=BE\)
VẬY \(\Delta BAE\)CÂN TẠI B(ĐPCM)
XÉT \(\Delta ACH\)VÀ\(\Delta ECH\)CÓ
CH LÀ CẠNH CHUNG
\(\widehat{H_1}=\widehat{H_3}\left(CMT\right)\)
\(AH=EH\left(GT\right)\)
\(\Rightarrow\Delta ACH=\Delta ECH\left(C-G-C\right)\)
\(\Rightarrow AC=EC\)
VẬY \(\Delta CAE\)CÂN TẠI C (ĐPCM)
Bài 1
\(3A=1.2.3+2.3.3+3.4.3+...+n\left(n+1\right)=\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n.\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]=\)
\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-\left(n-1\right).n.\left(n+1\right)+n\left(n+1\right)\left(n+2\right)=\)
\(=n\left(n+1\right)\left(n+2\right)\Rightarrow A=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)
Bài 2
a/
Xét tg vuông AEM có
\(\widehat{EAM}+\widehat{AEM}=90^o\)
Ta có
\(\widehat{EAM}+\widehat{BAH}=\widehat{MAH}-\widehat{BAE}=180^o-90^o=90^o\)
\(\Rightarrow\widehat{AEM}=\widehat{BAH}\)
Xét tg vuông AEM và tg vuông BAH có
\(\widehat{AEM}=\widehat{BAH}\)
AE=AB (cạnh bên tg cân)
=> tg AEM = tg BAH (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)
\(\Rightarrow EM=AH\) (1)
Xét tg vuông ANF có
\(\widehat{FAN}+\widehat{AFN}=90^o\)
Ta có
\(\widehat{FAN}+\widehat{CAH}=\widehat{NAH}-\widehat{FAC}=180^o-90^o=90^o\)
\(\Rightarrow\widehat{AFN}=\widehat{CAH}\)
Xét tg vuông AFN và tg vuông CAH có
\(\widehat{AFN}=\widehat{CAH}\)
AF=AC (cạnh bên tg cân)
=> tg AFN = tg CAH (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => HC=AN (2)
Từ (1) và (2) => EM+HC=AH+AN=NH
b/
Ta có
tg AFN = tg CAH (cmt) => FN=AH
Mà EM=AH (cmt)
=> EM=FN
\(EM\perp AH\left(gt\right);FN\perp AH\left(gt\right)\) => EM//FN (cùng vuông góc với AH)
=> ENFM là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)
=> EN//FM (trong hbh (2 cạnh đối // với nhau)
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
a:
góc BAE=góc BAC+góc CAE=góc BAC+60 độ
góc CAD=góc CAB+góc BAD=góc BAC+60 độ
=>góc BAE=góc CAD
Xét ΔABE và ΔADC có
AB=AD
góc BAE=góc DAC
AE=AC
=>ΔABE=ΔADC
b: ΔABE=ΔADC
=>góc ABE=góc ADC
=>góc ABM=góc ADM
Xét tứ giác ADBM có
góc ABM=góc ADM
=>ADBM là tứ giác nội tiếp
=>góc DMB=góc DAB=60 độ
góc DMB+góc BMC=180 độ(kề bù)
=>góc BMC=180-60=120 độ