K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2021

a) Xét tam giác ABC vuông tại A:

\(BC^2=AB^2+AC^2\left(Pytago\right)\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

Áp dụng HTL trong tam giác ABC vuông tại A có đường cao AH:

\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{3.4}{5}=2,4\left(cm\right)\)

b) Áp dụng HTL trong tam giác ABH vuông tại H và tam giác AHC vuông tại H:

\(\left\{{}\begin{matrix}AM.AB=AH^2\\AN.AC=AH^2\end{matrix}\right.\)\(\Rightarrowđpcm\)

26 tháng 10 2021

b: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

b: AC=5cm

d: Xét ΔKBH vuông tại K và ΔMCH vuông tại M có

BH=CH

\(\widehat{B}=\widehat{C}\)

Do đó: ΔKBH=ΔMCH

Suy ra: KB=MC

a: BC=căn 6^2+8^2=10cm

AH=6*8/10=4,8cm

c:

Xét tứ giác ANHM có

góc ANH=góc AMH=góc MAN=90 độ

=>ANHM là hình chữ nhật

AD vuông góc MN

=>góc DAC+góc ANM=90 độ

=>góc DAC+góc AHM=90 độ

=>góc DAC+góc ABC=90 độ

=>góc DAC=góc DCA

=>DA=DC 

góc DAC+góc DAB=90 độ

góc DCA+góc DBA=90 độ

mà góc DAC=góc DCA

nên góc DAB=góc DBA

=>DA=DB

=>DB=DC

=>D là trung điểm của BC

a: BC=căn 3^2+4^2=5cm

HB=AB^2/BC=1,8cm

HC=5-1,8=3,2cm

AH=3*4/5=2,4cm

b: 

1: ΔAHB vuông tại H có HE là đường cao

nên AE*EB=EH^2

2: ΔHAC vuông tại H có HF là đường cao

nên AF*FC=HF^2

=>AE*EB+AF*FC=HE^2+HF^2=EF^2=AH^2

21 tháng 12 2021

a: BC=5cm

AH=2,4cm

BH=1,8cm

CH=3,2cm

24 tháng 10 2021

1: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=5(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

hay AH=2,4(cm)

12 tháng 5 2022

a, Xét Δ ABC vuông tại A, có :

\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)

=> \(BC^2=3^2+4^2\)

=> \(BC^2=25\)

=> BC = 5 (cm)

b,

Xét Δ AHB và Δ CAB, có :

\(\widehat{AHB}=\widehat{CAB}=90^o\)

\(\widehat{ABH}=\widehat{CBA}\) (góc chung)

=> Δ AHB ∾ Δ CAB (g.g)

=> \(\dfrac{HB}{AB}=\dfrac{AH}{CA}\)

=> \(\dfrac{HB}{AH}=\dfrac{AB}{CA}\)

Xét Δ AHB và Δ CHA, có :

\(\widehat{AHB}=\widehat{CHA}=90^o\)

\(\dfrac{HB}{AH}=\dfrac{AB}{CA}\) (cmt)

=> Δ AHB ∾ Δ CHA (cmt)

 

 

12 tháng 5 2022

(Tự vẽ hình)

a) Áp dụng định lý Pytago ta có:

\(BC^2=AB^2+AC^2=3^2+4^2=25\Rightarrow BC=5\left(cm\right)\)

Do \(AD\) là phân giác nên ta có: \(\left\{{}\begin{matrix}BD+CD=BC=5\left(cm\right)\\\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{3}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BD+CD=5\\\dfrac{BD}{3}=\dfrac{CD}{4}\end{matrix}\right.\)

Áp dụng tính chất dãy tỉ số bằng nhau: 

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{5}{7}\Rightarrow\left\{{}\begin{matrix}BD=\dfrac{5}{7}.3=\dfrac{15}{7}\left(cm\right)\\CD=\dfrac{5}{7}.4=\dfrac{20}{7}\left(cm\right)\end{matrix}\right.\)

b) Xét \(\Delta AHB\) và \(\Delta CHA\) có:

\(\widehat{AHB}=\widehat{CHA}=90^0\)

\(\widehat{ABH}=\widehat{CAH}\) (cùng phụ \(\widehat{BAH}\))

\(\Rightarrow\Delta AHB\sim\Delta CHA\) (g.g)