Bài 1. Cho A4BC vuông tại B, phân giác AD. Từ D kẻ DH vuông góc với AC (HeAC); HD và AB kéo dài cắt nhau tại I. Chứng minh rằng: a) ^ABD = ^AHD c) ADIC cân e) ADIC b) AD là trung trực của BH d) BH//IC g) BC > AC + AD – 2AB
/giúp gấp câu g/
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tai A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
Do đó: ΔBAD=ΔBHD
Suy ra: AD=HD
b: ta có: AD=HD
mà HD<DC
nen AD<DC
c: Xét ΔBHK vuông tại H và ΔBAC vuông tạiA có
BH=BA
góc HBK chung
Do đó:ΔBHK=ΔBAC
Suy ra BK=BC
hay ΔBKC cân tại B
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
=>DA=DH
b: AD=DH
DH<DC
=>AD<DC
c: Xét ΔBKC có
KH,CA là đường cao
KH cắt CA tại D
=>D là trực tâm
=>BD vuông góc KC
a) Xét ΔABD vuông tại A và ΔHBD vuông tại H có:
- BD là cạnh chung
- \(\widehat{ABD}=\widehat{HBD}\) (vì BD là tia phân giác \(\widehat{ABC}\))
Suy ra ΔABD = ΔHBD (cạnh huyền - góc nhọn)
b) Từ a) suy ra AD = DH (hai cạnh tương ứng)
c) Đề bị thiếu: Điểm M ở đâu???
a) + Vì tam giác ABC vuông tại A (gt)
=> tam giác ABD vuông tại a
+ Vì DH vuông góc với BC (gt)
=> tam giác HBD vuông tại H
+ Xét ΔABD và ΔHBD, có:
+ Chung BD
+ góc ABD = góc HBD (BD là tia phân giác của góc ABC)
=> ΔABD = ΔHBD (cạnh huyền - góc nhọn)
b) Vì ΔABD = ΔHBD (cmt)
=> AD = DH (2 cạnh tương ứng)
c) Ko đủ dữ kiện
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
=>DA=DH
b: DA=DH
DH<DC
=>DA<DC
c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBK chung
=>ΔBHK=ΔBAC
=>BK=BC
=>ΔBKC cân tại B
a: Xet ΔABD vuông tại A và ΔAHD vuông tại H có
AD chung
góc BAD=góc HAD
=>ΔABD=ΔAHD
c: Xét ΔDBI vuông tại B và ΔDHC vuông tại H có
DB=DH
góc BDI=góc HDC
=>ΔBDI=ΔHDC
=>DI=DC và BI=HCC
d: Xét ΔAIC có AB/BI=AH/HC
nên BH//IC
g: BC+AB>AC
=>BC+2AB>AC+AB
mà AB<AD<AC
nên BC>AC+AD-2AB