Cho hình chữ nhật ABCD đường chéo BD. Từ A vẽ AH vuông góc BD(H thuộc BD)
a) Chứng minh tam giác AHD đồng dạng với tam giác CDB
b) Chứng minh AH.BD=AD.AB
c) Cho DH=9cm; HB=11cm. Tính diện tích tam giác ADB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét △AHD và △BCD có :
\(\widehat{H}=\widehat{D}=\left(90^o\right)\)
\(\widehat{D}=\widehat{B}\)(slt)
\(\Rightarrow\)△AHD ~ △BCD (g.g)
b) Xét △AHB và △DAB có :
\(\widehat{B}\)là góc chung
\(\widehat{A}=\widehat{H}=\left(90^o\right)\)
\(\Rightarrow\)△AHB ~ △DAB (g.g)
\(\Rightarrow\)\(\frac{AH}{AD}=\frac{AB}{BD}\)
\(\Rightarrow AH.BD=AD.AB\)(ĐPCM)
a: Xet ΔAHB vuông ạti H và ΔDAB vuông tại A có
góc DBA chung
=>ΔAHB đồng dạng với ΔDAB
b: ΔABD vuông tại A có AH vuông góc BD
nên AD^2=DH*BD=DH*AC
a: Xét ΔDHA vuông tại H và ΔDAB vuông tại A có
góc HDA chung
=>ΔDHA đồng dạng với ΔDAB
b: \(AH=\sqrt{4\cdot9}=6\left(cm\right)\)
a: Xét ΔDHA vuông tại H và ΔDAB vuông tại A có
góc HDA chung
=>ΔDHA đồng dạng với ΔDAB
b: \(AH=\sqrt{4\cdot9}=6\left(cm\right)\)
c: \(\dfrac{AD^2}{AB^2}=\dfrac{DH\cdot BD}{BH\cdot BD}=\dfrac{HD}{HB}\)
Giải
a) Xét\(\Delta AHB\)và\(\Delta BCD\)có:
\(\widehat{AHB}=\widehat{BCD}=90^o\)
\(\widehat{ABH}=\widehat{BDC}\) (so le trong)
=>\(\Delta AHB~\Delta BCD\) (g.g)
b) Xét\(\Delta AHD\)và\(\Delta AHB\)có:
\(\widehat{AHD}=\widehat{BHA}=90^o\)
\(\widehat{DAH}=\widehat{ABH}\)(cùng phụ\(\widehat{HAB}\))
=>\(\Delta AHD~\Delta AHB\) (g.g)
Mà ở cmt ta thấy\(\Delta AHB~\Delta BCD\)
Suy ra\(\Delta AHD~\Delta DCB\) (tính chất bắc cầu)
c) Áp dụng định lí Pi-ta-go vào tam giác vuông BCD có:
\(BD^2=BC^2+DC^2\)
\(BD^2=6^2+8^2\)
\(BD^2=36+64\)
\(BD=\sqrt{100}=10\left(cm,BD>0\right)\)
Xét tam giác vuông ABD có:
\(AH=\frac{AB.AD}{BD}=\frac{48}{10}=4,8\left(cm\right)\)
Áp dụng tính tính chất Pi-ta-go vào tam giác vuông AHB có:
\(AB^2=AH^2+HB^2\)
\(8^2=4,8^2+HB^2\)
\(HB^2=8^2-4,8^2\)
\(HB^2=40,96\)
\(HB=\sqrt{40,96}=6,4\left(cm,HB>0\right)\)
=> \(HD=BD-HB=10-6,4=3,6\left(cm\right)\)
Còn HC bn tự tính nhé!
#hoktot<3#
a, Xét 2 tam giác vuông đó có: (ADB)=(CBD) (cùng phụ với góc BDC)
b, AH.BD=AD.AB vì bằng 2 lần diện tích tam giác ADB.
c, Áp dụng hệ thức lượng trong tam giác vuông tính được AH.
Biết AH, BD tính được S tam giác.