K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2017

\(P=xy+x+y\le\dfrac{x^2+y^2}{2}+\sqrt{2\left(x^2+y^2\right)}\)

\(=\dfrac{2017}{2}+\sqrt{2.2017}=\dfrac{2017}{2}+\sqrt{4034}\)

26 tháng 1 2018

Xét : A = x^2017+x^2017+1+1+.....+1 ( 2015 số 1 )

Áp dụng bđt cosi thì : 

A >= \(2017\sqrt[2017]{x^{2017}.x^{2017}}\) = 2017.x^2

=> x^2 < = 2x^2017+2015/2017

Tương tự : y^2 < = 2y^2017+2015/2017 ; z^2 < = 2z^2017+2015/2017

=> x^2+y^2+z^2 < = 2(x^2017+y^2017+z^2017)+6045/2017 = 2.3+6045/2017 = 3

Dấu "=" xảy ra <=> x=y=z=1

Vậy GTLN của x^2+y^2+z^2 = 3 <=> x=y=z=1

Tk mk nha

https://olm.vn/hoi-dap/detail/97024326380.html

Tham khảo ở link này

Học tốt!!!!!!!!!!

23 tháng 1 2018

a)     \(\left|x+1\right|-\left|y-2\right|+\left|z+5\right|\le0\)

Đánh giá:   \(\left|x+1\right|\ge0;\)   \(\left|y-2\right|\ge0;\)   \(\left|z+5\right|\ge0\)

\(\Rightarrow\)\(\left|x+1\right|-\left|y-2\right|+\left|z+5\right|\ge0\)

Dấu  "="  xảy ra  \(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\y-2=0\\z+5=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-1\\y=2\\z=-5\end{cases}}\)

Vậy....

b)    \(A=-\left|x+1\right|-\left|y-2\right|-\left|z\right|+2017\)

Đánh giá:   \(-\left|x+1\right|\le0;\)  \(-\left|y-2\right|\le0;\)   \(-\left|z\right|\le0\)

\(\Rightarrow\)\(-\left|x+1\right|-\left|y-2\right|-\left|z\right|\le0\)

\(\Rightarrow\)\(-\left|x+1\right|-\left|y-2\right|-\left|z\right|+2017\le2017\)

Dấu  "="  xảy ra  \(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\y-2=0\\z=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-1\\y=2\\z=0\end{cases}}\)

Vậy   MAX  \(A=2017\) \(\Leftrightarrow\)\(x=-1;\)\(y=2;\)\(z=0\)

24 tháng 5 2020

Áp dụng bất đẳng thức Cauchy-Schwarz, ta được:

\(\left(9x^3+3y^2+z\right)\left(\frac{1}{9x}+\frac{1}{3}+z\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow\frac{x}{9x^3+3y^2+z}\le\frac{x\left(\frac{1}{9x}+\frac{1}{3}+z\right)}{\left(x+y+z\right)^2}=\frac{\frac{1}{9}+\frac{x}{3}+zx}{\left(x+y+z\right)^2}\)(1)

Hoàn toàn tương tự, ta có: \(\frac{y}{9y^3+3z^2+x}\le\frac{\frac{1}{9}+\frac{y}{3}+xy}{\left(x+y+z\right)^2}\)(2); \(\frac{z}{9z^3+3x^2+y}\le\frac{\frac{1}{9}+\frac{z}{3}+yz}{\left(x+y+z\right)^2}\)(3)

Cộng theo vế của 3 bất đẳng thức (1), (2), (3), ta được:

\(\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}\)\(\le\frac{\frac{1}{9}.3+\frac{x+y+z}{3}+xy+yz+zx}{\left(x+y+z\right)^2}\)

\(\le\frac{\frac{1}{9}.3+\frac{x+y+z}{3}+\frac{\left(x+y+z\right)^2}{3}}{\left(x+y+z\right)^2}=1\)(*)

Mặt khác, có: \(2017\left(xy+yz+zx\right)\le2017.\frac{\left(x+y+z\right)^2}{3}=\frac{2017}{3}\)(**)

Từ (*) và (**) suy ra \(A=\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}+2017\left(xy+yz+zx\right)\)

\(\le1+\frac{2017}{3}=\frac{2020}{3}\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

28 tháng 12 2017

\(\sqrt{x+2017}-y^3=\sqrt{y+2017}-x^3\)

\(\Leftrightarrow\left(\sqrt{x+2017}-\sqrt{y+2017}\right)+\left(x^3-y^3\right)=0\)

\(\Leftrightarrow\dfrac{x-y}{\sqrt{x+2017}+\sqrt{y+2017}}+\left(x-y\right)\left(x^2+xy+y^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(\dfrac{1}{\sqrt{x+2017}+\sqrt{y+2017}}+\left(x^2+xy+y^2\right)\right)=0\)

\(\Leftrightarrow x=y\)

\(\Rightarrow P=x^2-3x^2+12x-x^2+2018\)

\(=-3x^2+12x+2018=2030-3\left(x-2\right)^2\le2030\)

4 tháng 4 2022

bn có giải đc ko?

4 tháng 4 2022

d. Áp dụng BĐT Caushy Schwartz ta có:

\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)

-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)