Cho tam giác nhọc ABC (AB<AC); Gọi M là trung điểm của BC. Trên tia đối của tia MA xác định điểm E sao cho ME=MA
1. Chứng minh: tam giác MAC = tam giác MEB
2. Chứng minh AC=EB
3. Kẻ EH vuông góc với BC, (H thuộc BC). Chứng minh rằng EH<MA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEC và ΔABF có
AE=AB
góc EAC=góc BAF
AC=AF
=>ΔAEC=ΔABF
b: góc F+góc E=45+45=90 độ
=>góc FIE=90 độ
=>BF vuông góc CE
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:
\(AD\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(AE\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b) Ta có: \(AD\cdot AB=AE\cdot AC\)(cmt)
nên \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Xét ΔADE và ΔACB có
\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)(cmt)
\(\widehat{BAC}\) chung
Do đó: ΔADE\(\sim\)ΔACB(c-g-c)
Suy ra: \(\widehat{AED}=\widehat{ABC}\)(hai góc tương ứng)
Gọi AD,BE,CF lần lượt là đường cao cảu tam giác ABC,mà H là trực tâm của tam giác ABC nên AD,BE,CF đồng quy tại H
Ta có:\(\widehat{HAM}=90^0-\widehat{AHE}=90^0-\widehat{BHD}=\widehat{KBH}\)
Ta lại có:\(\widehat{AHM}=90^0-\widehat{KHD}=\widehat{BKH}\)
Xét \(\Delta AHM\&\Delta BKH\)có:
\(\hept{\begin{cases}\widehat{HAM}=\widehat{KBH}\\\widehat{AHM}=\widehat{BKH}\end{cases}}\)
\(\Rightarrow\Delta HAM\)đồng dạng với \(\Delta BKH\left(g.g\right)\)(mk ko bt kí hiệu đồng dạng trong olm)
\(\Rightarrow\frac{AH}{BK}=\frac{HM}{HK}\)
\(CMTT:\Rightarrow\frac{AH}{KC}=\frac{HN}{HK}\)
Mà BK=KC\(\Rightarrow\frac{HM}{HK}=\frac{HN}{HK}\Rightarrow HM=HN\)
Suy ra HK là đường trung tuyến của tam giác NMK,mà HK cũng là đường cao của tam giác NMK
Suy ra tam giác NMK cân tại K(đpcm)
a) xét tam giác ABD và tam giác AHF có
góc BAD chung
Góc AFH = góc ADB (=90 độ)
=> tam giác ABD đồng dạng vs tam giác AHF (g.g)
=> AB/AD = AH/AF
=> AF.AD = AH.AD
b) xét tam giác AFC và tam giác AEB có
Góc A chung
Góc AFC = góc AEB (=90 độ)
=> tam giác AFC đồng vs tam giác AEB (g.g)
=> AF/AC = AE/AB
=> AF.AB= AE.AC
a: Xét ΔABD vuông tại D và ΔAHF vuông tại F có
góc FAH chung
=>ΔABD đồng dạng với ΔAHF
=>AB/AH=AD/AF
=>AB*AF=AH*AD
b: Xet ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF
=>AE/AB=AF/AC
=>ΔAEF đồng dạng với ΔABC
c:góc FEC=góc DAC
góc DFC=góc EBC
mà góc DAC=góc EBC
nên góc FEC=goc DFC
=>FC là phân giác của góc EFD
a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có
HB chung
HA=HD
Do đó: ΔABH=ΔDBH
b: XétΔABC có \(\widehat{B}>\widehat{C}\)
nên AB<AC
XétΔABC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
Xét ΔDBC có
HB là hình chiếu của DB trên BC
HC là hình chiếu của DC trên BC
mà HB<HC
nên DB<DC
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
1. *Xét ∆MAC và ∆MEB, ta có:
ME = MA (gt)
AMC = BME (vì đối đỉnh)
MB = MC ( M là trung điểm BC)
Vậy ∆MAC = ∆MEB (c-g-c).
2. Ta có: ∆MAC = ∆MEB (cmt)
Nên: AC = EB ( 2 cạnh tương ứng).
3. * Ta có: EH ⊥ BC (gt)
=> ∆MEH vuông tại H.
=> MHE = 900
Mà: ME là cạnh đối diện của MHE
Nên ME là cạnh lớn nhất trong ∆MEH
=> ME > EH.
Mà: ME = MA (gt)
Nên: MA > EH
Hay EH < MA (đpcm)
Vậy EH < MA.
Chúc bn hx tốt!