K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

1. *Xét ∆MAC và ∆MEB, ta có:

ME = MA (gt)

AMC = BME (vì đối đỉnh)

MB = MC ( M là trung điểm BC)

Vậy ∆MAC = ∆MEB (c-g-c).

2. Ta có: ∆MAC = ∆MEB (cmt)

Nên: AC = EB ( 2 cạnh tương ứng).

3. * Ta có: EH ⊥ BC (gt)

=> ∆MEH vuông tại H.

=> MHE = 900

Mà: ME là cạnh đối diện của MHE

Nên ME là cạnh lớn nhất trong ∆MEH

=> ME > EH.

Mà: ME = MA (gt)

Nên: MA > EH

Hay EH < MA (đpcm)

Vậy EH < MA.

Chúc bn hx tốt!

a: Xét ΔAEC và ΔABF có

AE=AB

góc EAC=góc BAF

AC=AF
=>ΔAEC=ΔABF

b: góc F+góc E=45+45=90 độ

=>góc FIE=90 độ

=>BF vuông góc CE

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:

\(AD\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b) Ta có: \(AD\cdot AB=AE\cdot AC\)(cmt)

nên \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét ΔADE và ΔACB có 

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔADE\(\sim\)ΔACB(c-g-c)

Suy ra: \(\widehat{AED}=\widehat{ABC}\)(hai góc tương ứng)

11 tháng 7 2021

undefined

Gọi AD,BE,CF lần lượt là đường cao cảu tam giác ABC,mà H là trực tâm của tam giác ABC nên AD,BE,CF đồng quy tại H

Ta có:\(\widehat{HAM}=90^0-\widehat{AHE}=90^0-\widehat{BHD}=\widehat{KBH}\)

Ta lại có:\(\widehat{AHM}=90^0-\widehat{KHD}=\widehat{BKH}\)

Xét \(\Delta AHM\&\Delta BKH\)có:

\(\hept{\begin{cases}\widehat{HAM}=\widehat{KBH}\\\widehat{AHM}=\widehat{BKH}\end{cases}}\)

\(\Rightarrow\Delta HAM\)đồng dạng với \(\Delta BKH\left(g.g\right)\)(mk ko bt kí hiệu đồng dạng trong olm)

\(\Rightarrow\frac{AH}{BK}=\frac{HM}{HK}\)

\(CMTT:\Rightarrow\frac{AH}{KC}=\frac{HN}{HK}\)

Mà BK=KC\(\Rightarrow\frac{HM}{HK}=\frac{HN}{HK}\Rightarrow HM=HN\)

Suy ra HK là đường trung tuyến của tam giác NMK,mà HK cũng là đường cao của tam giác NMK

Suy ra tam giác NMK cân tại K(đpcm)

26 tháng 3 2023

a) xét tam giác ABD và tam giác AHF có 

góc BAD chung

Góc AFH = góc ADB (=90 độ)

=> tam giác ABD đồng dạng vs tam giác AHF (g.g)

=> AB/AD = AH/AF

=> AF.AD = AH.AD

b) xét tam giác AFC và tam giác AEB có

Góc A chung

Góc AFC = góc AEB (=90 độ)

=> tam giác AFC đồng vs tam giác AEB (g.g)

=> AF/AC = AE/AB

=> AF.AB= AE.AC

a: Xét ΔABD vuông tại  D và ΔAHF vuông tại F có

góc FAH chung

=>ΔABD đồng dạng với ΔAHF

=>AB/AH=AD/AF

=>AB*AF=AH*AD

b: Xet ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF

=>AE/AB=AF/AC
=>ΔAEF đồng dạng với ΔABC

c:góc FEC=góc DAC

góc DFC=góc EBC

mà góc DAC=góc EBC

nên góc FEC=goc DFC

=>FC là phân giác của góc EFD

a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có

HB chung

HA=HD

Do đó: ΔABH=ΔDBH

b: XétΔABC có \(\widehat{B}>\widehat{C}\)

nên AB<AC
XétΔABC có AB<AC
mà HB là hình chiếu của AB trên BC

và HC là hình chiếu của AC trên BC

nên HB<HC

Xét ΔDBC có 

HB là hình chiếu của DB trên BC

HC là hình chiếu của DC trên BC

mà HB<HC

nên DB<DC

21 tháng 3 2022

C

21 tháng 12 2021

bài 2:

ta có: AB<AC<BC(Vì 3cm<4cm<5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

15 tháng 2 2022

bài 2:

ta có: AB <AC <BC (Vì 3cm <4cm <5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

HT mik làm giống bạn Dương Mạnh Quyết

2 tháng 12 2021

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

2 tháng 12 2021

Anh ơi