K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2015

Có 1 phương pháp để chứng minh 1 số không là số chính phương nhé pạn : Muốn chứng minh 1 số là không là số chính phương ta chứng minh số đó có chữ số tận cùng là 2 ;3 ;7 ; 8 hoặc 1 số lẻ có chữ số tận cùng = 0.

Trong trường hợp bài này bạn dùng máy tính tính từng lũy thừa 1 và lấy số cuối cùng cộng lại với nhau nhé . 
                     BG

2014^2=........6

2013^2=........9

2012^2=......4

2011^2=.......1

=> .......6 + .......9 +.......4 - ....1 =....../18 ( có chữ số tận cùng là 8 nên không phải số chính phương )
( click đúng và kết bạn nha ) 


 

3 tháng 7 2015

F = 8112388

28482 = 8111104 < 8112388 < 8116801 = 28492

=> 28482 < F < 28492

=> F không phải số chính phương

24 tháng 10 2019

4x - 29 độ2x + 8 độ5x - 8 độ2x - 7 độxzby

15 tháng 8 2023

https://olm.vn/cau-hoi/a-cho-a12211216211002-ctr-a12-b-cho-p122132142120232-ctr-p-khong-la-so-tu-nhien-c-cho-c132152172120211.8293222842881

Cô làm rồi em nhá

15 tháng 8 2023

Câu a, xem lại đề bài

Câu b: 

    P =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ...+ \(\dfrac{1}{2023^2}\)

   Vì  \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\)                =  \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)

         \(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\)                = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)

         \(\dfrac{1}{4^2}\)  < \(\dfrac{1}{3.4}\)               = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) 

     ........................

        \(\dfrac{1}{2023^2}\) < \(\dfrac{1}{2022.2023}\) = \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)

Cộng vế với vế ta có:  

0< P < 1 - \(\dfrac{1}{2023}\) < 1

Vậy 0 < P < 1 nên P không phải là số tự nhiên vì không tồn tại số tự nhiên giữa hai số tự nhiên liên tiếp

 

15 tháng 8 2023

Câu c:  

C = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{5^2}\) + \(\dfrac{1}{7^2}\) + ....+ \(\dfrac{1}{2021^2}\) + \(\dfrac{1}{2023^2}\) = C 

B =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+ \(\dfrac{1}{2020^2}\) + \(\dfrac{1}{2023^2}\) > 0 

Cộng vế với vế ta có: 

C+B =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{5^2}\)\(\dfrac{1}{6^2}\)+...+ \(\dfrac{1}{2023^2}\) > C + 0 = C > 0

             Mặt khác ta có: 

1 > \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{2023^2}\) (cm ở ý b)

Vậy 1 > C > 0 hay C không phải là số tự nhiên (đpcm)

 

 

29 tháng 3 2015

Rõ ràng -a + (-b) = -(a + b) và a + b đối nhau mà, bạn xem lại đề đi

4 tháng 3 2016

SỐ TO TÊK

6 tháng 1 2017

Lớp 7 mà bài này ko làm được hả anh trai

6 tháng 1 2017

n^3 + 17n = n^3 - n + 18n 

                = n(n^2-1) + 18n

                = n(n-1)(n+1) + 18n 

nhận xét n, n-1 , n+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3 và ít nhất 1 số  chia hết cho 2 

nên n(n-1)(n+1) chia hết cho 2 và 3 mà 2 và 3 nguyên tố cùng nhau nên n(n-1)(n+1) chia hết cho 6

hay n^3 - n chia hết cho 6 

và 18n chia hết cho 6 

=> n^3 -n + 18n chia hết cho 6 

hay n^3 + 17n chia hết cho 6

ĐKXĐ: \(n\ne-3\)

Sửa đề: Tìm n để \(B=\dfrac{2n+5}{n+3}\) là số nguyên

Để B là số nguyên thì \(2n+5⋮n+3\)

\(\Leftrightarrow2n+6-1⋮n+3\)

mà \(2n+6⋮n+3\)

nên \(-1⋮n+3\)

\(\Leftrightarrow n+3\inƯ\left(-1\right)\)

\(\Leftrightarrow n+3\in\left\{1;-1\right\}\)

\(\Leftrightarrow n\in\left\{-2;-4\right\}\)

Kết hợp ĐKXĐ, ta được: \(n\in\left\{-2;-4\right\}\)

Vậy: Để B nguyên thì \(n\in\left\{-2;-4\right\}\)