K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc PMK+góc PIK=180 độ

=>PMKI nội tiếp

b: Xét ΔEIP vuông tại I và ΔEMK vuông tại M có

góc E chung

=>ΔEIP đồng dạng với ΔEMK

=>EI/EM=EP/EK

=>EI*EK=EP*EM

10 tháng 3 2022

Ta có :

Do BD và CE là các đường cao nên

suy ra góc BEC = góc BDC =90 độ

Xét tứ giác BCDE,có:

góc BEC=góc BDC

vậy BCDE là tứ giác nội tiếp(đpcm)

15 tháng 3 2022

lx

15 tháng 3 2022

lỗi 

4 tháng 3 2021

mọi người giúp em với ạ em cần gấp

 

4 tháng 3 2021

.

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

b: BFEC nội tiếp

=>góc BFE+góc BCE=180 độ

=>góc AFE=góc ACB

c: Kẻ tiếp tuyến Ax của (O)

=>góc xAC=góc ABC=góc AEF

=>Ax//FE

=>FE vuông góc AO

a) Xét tứ giác AEHF có 

\(\widehat{AFH}\) và \(\widehat{AEH}\) là hai góc đối

\(\widehat{AFH}+\widehat{AEH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc cùng nhìn cạnh BC

Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

a) Xét tứ giác KEDC có 

\(\widehat{KEC}\) và \(\widehat{KDC}\) là hai góc đối

\(\widehat{KEC}+\widehat{KDC}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: KEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Tâm của đường tròn này là trung điểm của KC