K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

góc BAD chung

=>ΔADB=ΔAEC

=>BD=CE

b: góc ABD=góc ACE

=>góc HBC=góc HCB

=>ΔHBC cân tại H

c: AB=AC

HB=HC

=>AH là trung trực của BC

28 tháng 2 2020

b2 :

a, xét tam giác ABD và tam giác ACE có: góc A chung

AB = AC do tam giác ABC cân tại A (gt)

góc ADB = góc AEC = 90

=> tam giác ABD = tam giác ACE (ch-cgv)

b, tam giác ABD = tam giác ACE (câu a)

=> góc ABD = góc ACE (đn)

góc ABC = góc ACB do tam giác ABC cân tại A (gt)

góc HBC = góc ABC - góc ABD

góc HCB = góc ACB - góc ACE 

=> góc HBC = góc HCB 

=> tam giác HBC cân tại H (Dh)

còn câu 1

13 tháng 6 2020

tự kẻ hình nghen

a)xét tam giác EBC và tam giác DCB có

BC chung 

BEC=CDB(=90 độ)

EBC=DCB( tam giác ABC cân A)

=> tam giác EBC= tam giác DCB(ch-gnh)

=> BD= CE ( hai cạnh tương ứng)

b) từ tam giác EBC= tam giác DCB=> ECB=DBC( hai góc tương ứng)

=> tam giác HBC cân H

c) vì AH, BD, EC giao nhau tại H mà BD vuông góc với AC, CE vuông góc với AB=> AH vuông góc với BC ( 3 đường cao cùng đi qua một điểm)

gọi O là giao điểm của AH và BC

xét tam giác HBO và tam giác HCO có

HOB=HOC(=90 độ)

HB=HC( tam giác HBC cân H)

HBO=HCO( cmt)

=> tam giác HBO =tam giác HCO( ch-gnh)

=>BO=CO(hai cạnh tương ứng)=> O là trung điểm của BC

AH vuông góc với BC=> AH là trung trực của BC

d) xét tam giác CDB và tam giác CDK có

BD=DK(gt)

CDB=CDK(=90 độ)

DC chung

=> tam giác CDB= tam giác CDK (cgc)

=> CBD=CKD( hai góc tương ứng)

mà CBD=ECB( cmt)=> ECB=CKD

9 tháng 5 2018

ABCHIEDNM
 

a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có

AB=AC(tam giác ABC cân tại A)

Góc A chung 

=> Tam giác ABD=tam giác ACE(ch-gn)

b) Ta có: \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
                 Và \(\widehat{ABD}=\widehat{ACE}\) ( tam giác ABD=ACE)

\(\Leftrightarrow\widehat{ABC}-\widehat{ABD}=\widehat{ACB}-\widehat{ACE}\\ \Leftrightarrow\widehat{DBC}=\widehat{ECB}\)

Do đó tam giác BHC cân tại H

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)

Suy ra: BD=CE(hai cạnh tương ứng)

b) Ta có: ΔABD=ΔACE(cmt)

nên AD=AE(hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)