Cho tam giác ABC nhọn ( AB < AC) nội tiếp đường tròn (O;R). Vẽ đường cao BD và CE cắt tại H{ với De AC; E = AB). BD và CE lầnlượt cắt đường tròn tại M và N.a) Chứng minh tứ giác BCDE nội tiếp đường tròn. b) Biết overline ACN = 30 deg . Tính số đo các cung nhỏ AN, MNc) Chứng minh :OA 1 MN.d) Gọi giao điểm của AH và BC là K. Chứng minh 2R.AK =...
Đọc tiếp
Cho tam giác ABC nhọn ( AB < AC) nội tiếp đường tròn (O;R). Vẽ đường cao BD và CE cắt tại H{ với De AC; E = AB). BD và CE lần
lượt cắt đường tròn tại M và N.
a) Chứng minh tứ giác BCDE nội tiếp đường tròn. b) Biết overline ACN = 30 deg . Tính số đo các cung nhỏ AN, MN
c) Chứng minh :OA 1 MN.
d) Gọi giao điểm của AH và BC là K. Chứng minh 2R.AK = AB.AC
a: Xét tứ giác BEDC có
góc BEC=góc BDC=90 độ
=>BEDC là tứ giác nội tiêp
b: góc ABM=góc ACN
=>sđ cung AM=sđ cung AN=2*30=60 độ
=>AM=AN
c: OM=ON
AM=AN
=>OA là trung trực của MN
=>OA vuông góc MN
d: Kẻ đường kính AD
Xét ΔACD vuông tại C và ΔAKB vuông tại K có
góc ADC=góc ABK
=>ΔACD đồng dạng với ΔAKB
=>AC/AK=AD/AB
=>AK*2*R=AB*AC