K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

Cho tam giác ABC vuông ở A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE. a) Chứng minh AH=DE.
b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông.
c) Chứng minh O là trực tâm của tam giác ABQ.
d) Chứng minh diện tích ABC = diện tích DEQP

3 tháng 5 2022

mọi người giúp em dùm cái ạ -_-

3 tháng 5 2022

\(\widehat{DAH}=90^0-\widehat{AHD}=\widehat{BHD}\).

\(\widehat{HAE}=90^0-\widehat{AHE}=\widehat{CHE}\).

-△AHD và △HBD có: \(\widehat{DAH}=\widehat{DHB};\widehat{ADH}=\widehat{BDH}=90^0\).

\(\Rightarrow\)△AHD∼△HBD (g-g) \(\Rightarrow\dfrac{AD}{HD}=\dfrac{HD}{BD}\Rightarrow HD^2=AD.BD\).

-△AHE và △HCE có: \(\widehat{HAE}=\widehat{CHE};\widehat{AEH}=\widehat{HEC}=90^0\).

\(\Rightarrow\)△AHE∼△HCE (g-g) \(\Rightarrow\dfrac{AE}{HE}=\dfrac{HE}{CE}\Rightarrow HE^2=AE.CE\)

\(\Rightarrow HD^2+HE^2=AD.BD+AE.CE\left(1\right)\).

-Tứ giác ADHE có: \(\widehat{ADH}=\widehat{DAE}=\widehat{AEH}=90^0\)

\(\Rightarrow\)ADHE là hình chữ nhật nên △DHE vuông tại H, \(AH=DE\)

\(\Rightarrow HD^2+HE^2=DE^2=AH^2\left(2\right)\)

-Từ (1), (2) suy ra: \(AH^2=AD.BD+AE.CE\)

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Đề thiếu rồi. Bạn coi lại đề.

AH
Akai Haruma
Giáo viên
17 tháng 9 2021

Theo đkđb thì $AI^2=AD.AE$. Vì vậy, nếu muốn $AI^2=DE.AE$ thì $AD=DE$ (điều này vô lý vì $AD<DE$ theo tính chất cạnh huyền trong tam giác vuông.

 

AH
Akai Haruma
Giáo viên
17 tháng 9 2021

Hình vẽ:

a: Xét tứ giác AEHD có \(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)

nên AEHD là hình chữ nhật

Suy ra: EH//AD; EH=AD: EA//HD; EA=HD

b: Vì AEHD là hình chữ nhật

nên AH=DE

c: Ta có: AEHD là hình chữ nhật

mà O là giao của hai đường chéo

nên OA=OE=OD=OH

24 tháng 10 2021

b: \(DA\cdot DB+EA\cdot EC\)

\(=HD^2+HE^2\)

\(=AH^2=HB\cdot HC\)

1 tháng 4 2018

là NB.NC = NE.ND các bạn nhé

mình hơi nhầm

16 tháng 10 2020

A B C H D E

16 tháng 10 2020

a, Ta có : 

^C = 450 ( t/c tam giác vuông cân : mỗi góc nhọn đều bằng 450 ) (*)

Lại có : Đường trung trực của một đoạn thẳng là đường thẳng vuông góc với đoạn thẳng ấy tại trung điểm của nó 

Mà : ^BDH = 900 => ^HDA + ^BDH = ^DBA => ^HDA = ^DBA - ^BDH = 1800 - 900 = 900

Suy ra : ^ADE = ^HDE = ^HDA/2 = 900/2 = 450 (**)

tỪ (*); (**) TA CÓ ĐPCM