K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC

hay BMNC là hình thang

b: Xét hình thang BMNC có 

E là trung điểm của MB

Q là trung điểm của NC

Do đó: EQ là đường trung bình của hình thang BMNC

Suy ra: \(EQ=\dfrac{MN+BC}{2}\)

\(\Leftrightarrow BC\cdot\dfrac{3}{2}=2\cdot3=6\)

hay BC=4

Suy ra: MN=2

20 tháng 8 2016

giups mình đi các bạn!!

22 tháng 2 2017

a)C/m: BMC = CNB

21 tháng 7 2023

Gọi K là giao của AI với MN

Áp dụng talet trong tam giác

\(\dfrac{MK}{BI}=\dfrac{NK}{CI}\Rightarrow\dfrac{MK}{NK}=\dfrac{BI}{CI}=1\)

=> MK = NK

a: Xét ΔCAB có

N là trung điểm của AB

NP//AB

=>P là trung điểm của AC

Xét ΔCAB có

N là trung điểm của BC

NM//AC

=>M là trung điểm của AB

b: Xét tứ giác ANCE có

P là trung điểm chung của AC và NE

AC vuông góc NE

=>ANCE là hình thoi

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)

\(\Leftrightarrow MN=\dfrac{12}{2}=6\left(cm\right)\)

b: Ta có: MN//AC và \(MN=\dfrac{AC}{2}\)

mà P\(\in\)AC và \(AP=\dfrac{AC}{2}\)(P là trung điểm của AC

nên MN//AP và MN=AP

Xét ΔABC có 

M là trung điểm của AB

P là trung điểm của AC

Do đó: MP là đường trung bình của ΔABC

Suy ra: MP//BC và \(MP=\dfrac{BC}{2}\)

mà N\(\in\)BC và \(BM=\dfrac{BC}{2}\)

nên MP//BN và MP=BN

Xét tứ giác AMNP có 

MN//AP

MN=AP

Do đó: AMNP là hình bình hành

Xét tứ giác BMPN có 

MP//BN

MP=BN

Do đó: BMPN là hình bình hành

c) Hình bình hành AMNP trở thành hình vuông khi \(\left\{{}\begin{matrix}\widehat{MAP}=90^0\\AM=AP\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{BAC}=90^0\\AB=AC\end{matrix}\right.\)