cho hình bình hành ABCD, M thuộc BC. để m N thuộc tia đố của tia BC sao cho cho BN=CM; DN và DM lần lượt căt AB theo thứ tự tại E và F.
cHỨNG MINH AE^2=EF*EB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: BE+AE=BA
DF+FC=DC
mà BA=DC
và AE=FC
nên BE=DF
Ta có: AN+ND=AD
CM+MB=CB
mà AD=CB
và AN=CM
nên ND=MB
Xét ΔANE và ΔCMF có
AN=CM
\(\widehat{A}=\widehat{C}\)
AE=CF
Do đó: ΔANE=ΔCMF
Suy ra: NE=MF
Xét ΔEBM và ΔFDN có
EB=FD
\(\widehat{B}=\widehat{D}\)
BM=DN
Do đó: ΔEBM=ΔFDN
Suy ra: EM=FN
Xét tứ giác MENF có
ME=NF
NE=MF
Do đó: MENF là hình bình hành
a,
-Xét tứ giác ANMD có AD//MN, AD=MN
(AD=BC=BM+CM=BN+BM=MN)
=> ANMD là hình bình hành =>AN//DM
=> AE/EF = EN/ED
mà NB//AD =>EB/AE = EN/ED
=> EB/AE = AE/EF
=> AE^2 = EB.FE
b,
-Từ AE^2 = EB.FE (theo a)
=>AE= (EB.EF)/AE
-Ta có: EB/AE = EN/ED (theo a)
=> EB = (EN/EB).AE
=> EB = (EN/ED). (EB.EF)/AE
mà EB/AE = EN/ED = AN/DF
=> EB = (AN/DF)^2 .EF
Ta có: BE+AE=BA
DF+FC=DC
mà BA=DC
và AE=FC
nên BE=DF
Ta có: AN+ND=AD
CM+MB=CB
mà AD=CB
và AN=CM
nên ND=MB
Xét ΔANE và ΔCMF có
AN=CM
\(\widehat{A}=\widehat{C}\)
AE=CF
Do đó: ΔANE=ΔCMF
Suy ra: NE=MF
Xét ΔEBM và ΔFDN có
EB=FD
\(\widehat{B}=\widehat{D}\)
BM=DN
Do đó: ΔEBM=ΔFDN
Suy ra: EM=FN
Xét tứ giác MENF có
ME=NF
NE=MF
Do đó: MENF là hình bình hành