cho hình bình hành ABCD, M thuộc BC. điể m N thuộc tia đối của tia BC sao cho cho BN=CM; DN và DM lần lượt căt AB theo thứ tự tại E và F.
Chứng minh AE^2=EF*EB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn học đến phần nào rồi
đầu tiên CM được TgEMA =Tg FNC
=>AM=NC
=>TgOME=TgOCN
kẻ OB, OD
CM được TgOMD=TgONC
=>gócBON=gócDOM
=>Đpcm'''
có gi ko hiểu thì hỏi nhá
buồn ngủ quá
a: Ta có: BE+AE=BA
DF+FC=DC
mà BA=DC
và AE=FC
nên BE=DF
Ta có: AN+ND=AD
CM+MB=CB
mà AD=CB
và AN=CM
nên ND=MB
Xét ΔANE và ΔCMF có
AN=CM
\(\widehat{A}=\widehat{C}\)
AE=CF
Do đó: ΔANE=ΔCMF
Suy ra: NE=MF
Xét ΔEBM và ΔFDN có
EB=FD
\(\widehat{B}=\widehat{D}\)
BM=DN
Do đó: ΔEBM=ΔFDN
Suy ra: EM=FN
Xét tứ giác MENF có
ME=NF
NE=MF
Do đó: MENF là hình bình hành