Cho hình thang cân ABCD có đáy lớn AD, M và N lần lượt là trung điểm của các cạnh AB và CD. Kẻ đường cao AH
a) CMR: AH= (BD+AD)/2 ; DH=(AH-BC)/2
b) Từ kết quả câu a hãy CM khẳng định "Trong hình thang cân mỗi đường chéo đều lớn hơn đường trung bình"
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tg ADH và tg BCK có: ^AHD=^BKC=90 ; AD=BC( vì tg ABCD là hthang cân); ^ADH =^BCK (vì tg ABCD là hthang cân)
=> tg ADH=tg BCK (ch-gn) => DH=CK
b) xét hthang ABCD có: M là t/đ của AD(gt) và N là t/đ của BC(gt)=> MN là đg trung bình của hthang ABCD => MN//AB//CD
và MN= 1/2.(AB+CD)=> MN= 1/2.(4+10)==7 (cm)
xét tg ABC có: N là t/đ của Bc(gt) ; NF//AB( vì F thuộc MN ; MN//AB) => F là t/đ của AC=> NF la đg trung bình của tg ABC
=> NF=1/2.AB=1/2.4=2(cm)
c/m tương tự ta đc: ME=2cm
ta có: MN=ME+EF+FN ( vì E,F thuộc MN)
=> 7 =2+EF+2 => EF=3 (cm)
Vậy độ dài cạnh EF là 3cm
a:Xét hình thang ABCD có
M là trung điểm của AD
MN//AB//CD
Do đó: N là trung điểm của BC
Xét ΔDAB có
M là trung điểm của AD
ME//AB
Do đó: E là trung điểm của BD
Xét ΔABC có
N là trung điểm của BC
NF//AB
Do đó: F là trung điểm của AC
a: Xét hình thang ABCD có
M là trung điểm của AD
MN//AB//CD
Do đó: N là trung điểm của BC
Xét ΔADC có
M là trung điểm của AD
MF//DC
Do đó: F là trung điểm của AC
Xét ΔBDC có
N là trung điểm của BC
NE//DC
Do đó: E là trung điểm của BD
vì oa=ob
=>tam giác aob là tam giác cân tại o (đn tam giác cân)
=>góc oab=góc oba
mà ab//cd
=> abcd là hình thang cân
đúng thì k cho mik vs ạ