K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2022

a: Xét ΔBID và ΔBIC có

BD=BC

góc CBI=góc DBI

BI chung

Do đó: ΔBID=ΔBIC

b: Xét ΔBEC và ΔBED có

BE chung

góc EBC=góc EBD

BC=BD

Do đó: ΔBEC=ΔBED

=>ED=EC

c: ΔBCD cân tại B

mà BI là đường phân giác

nên BI vuông góc với CD

=>BI//AH

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

BA=BE

=>ΔBAD=ΔBED

=>góc ABD=góc EBD

=>BD là phân giác của góc ABE

b: BA=BE

DA=DE

=>BD là trung trực của AE

a: Xét ΔBAD và ΔBKD có 

BA=BK

\(\widehat{ABD}=\widehat{KBD}\)

BD chung

Do đó: ΔBAD=ΔBKD

Suy ra: \(\widehat{BAD}=\widehat{BKD}=90^0\)

hay DK\(\perp\)BC

b: Xét ΔBEC có BE=BC

nên ΔBEC cân tại B

mà BI là đường phân giác

nên BI là đường cao

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD = DEb )...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0

a) Ta có: \(BC^2=13^2=169\)

\(AB^2+AC^2=5^2+12^2=169\)

Do đó: \(BC^2=AB^2+AC^2\)(=169)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

a: Xét ΔABE và ΔDBE có 

BA=BD

\(\widehat{ABE}=\widehat{DBE}\)

BE chung

Do đó: ΔABE=ΔDBE

b: Xét ΔAEF vuông tại A và ΔDEC vuông tại D có 

EA=ED

AF=DC

Do đó: ΔAEF=ΔDEC

Suy ra: EF=EC

hay E nằm trên đường trung trực của CF(1)

Ta có: BF=BC

nên B nằm trên đường trung trực của CF(2)

Từ (1) và (2) suy ra BE là đường trung trực của CF

=>BE⊥CF

hay BG⊥CF