Cho góc bét ABD. Trên cùng nửa mặt phẳng bờ AD vẽ 2 tia BC và BE sao cho ABC=112; DBC=34\
Tính CBD
Chứng tỏ BE là tia phân giác CBD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Sửa đề 1 tí nhé
Ta có: CBD = 180 độ - ABC
CBD = 180 độ - 112 độ
CBD = 68 độ
Ta có: ABE = 180 độ - EBD = 146 độ
=> Góc ABC < góc ABE
Theo đề ra: Tia BC và tia BE thuộc nửa mặt phẳng bờ AD
=> BC nằm giữa hai tia BA và BE
Mà: BE nằm giữa hai tia BA và BD
=> BE nằm giữa hia tia OC và BD
Ta có: Góc DBE = 34 độ
Góc CBD = 68 độ
=> Góc DBE = 1/2 góc DBC
Vậy BE là tia phân giác của góc DBC
a) Ta có: \(\widehat{ABC}+\widehat{CBD}=180^0\)( kề bù )
\(112^0+\widehat{CBD}=180^0\)
\(\widehat{CBD}=68^0\)
b) Ta có: \(\widehat{CBE}+\widehat{EBD}=\widehat{CBD}\)
\(\widehat{CBE}+34^0=68^0\)
\(\widehat{CBE}=34^0\)
Vậy BE là tia phân giác của góc CBD
Bài làm
~ Đề bài phải làm godc DBE = 34* mới hợp lí. ~
b) Ta có: \(\widehat{ABC}+\widehat{CBD}=180^0\) ( hai góc kề bù )
hay \(112^0+\widehat{CBD}=180^0\)
=> \(\widehat{CBD}=180^0-112^0=68^0\)
Vậy \(\widehat{CBD}=68^0\)
~ Ngoài tính theo góc kề bù, bạn có thể cộng góc AB với CBE + EBD = 180o Vì góc ABD là góc bẹt. Rồi lấy 180o - 112o - 34o thì sẽ ra góc CBE, rồi lấy góc CBE + EBD thì sẽ ra, nhưng góc kề bù sẽ tính nhanh hơn đó. ~
b) Ta có \(\widehat{CBE}+\widehat{EBD}=68^0\)
hay \(\widehat{CBE}=180^0-\widehat{EBD}\)
=> \(\widehat{CBE}=68^0-34^0\)
=> \(\widehat{CBE}=34^0\)
Mà \(\widehat{EBD}=34^0\)
=> \(\widehat{CBE}=\widehat{EBD}=34^0\)
Do đó: BE là tia phân giác của \(\widehat{CBD}\)
# Chúc bạn học tốt #