Cho tam giác ABC vuông tại C, kẻ CH vuông góc với AB. Trên các cạnh AB và AC lấy tương ứng hai điểm M, N sao cho BM = BC ; CN = CH. C/m : MN vuông góc với AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 bạn tự làm nhé
Bài 2 :
Xét \(\Delta\)ADE vuông tại E :
AE < AD (1)
Xét \(\Delta\)CDF vuông tại F
CF < CD (2)
Từ (1) và (2) => AE + CF < AD + CD = AC
Bài 3 :
Ta có : \(BM=BC\)=> \(\Delta\)BMC cân ở C nên \(\widehat{MCB}=\widehat{CMB}\)
Ta lại có : \(\widehat{BCM}+\widehat{MCA}=90^0,\widehat{CMH}+\widehat{MCH}=90^0\)
=> \(\widehat{MCH}=\widehat{MCN}\)
Xét \(\Delta\)MHC và \(\Delta\)MNC có :
MC chung
HC = NC(gt)
\(\widehat{MCH}=\widehat{MCN}\)(cmt)
=> \(\Delta\)MHC = \(\Delta\)MNC(c.g.c)
Do đó \(\widehat{MNC}=\widehat{MHC}=90^0\)
hay MN \(\perp\)AC
Ta có : BM = BC,CH = CN và AM > AN
Do đó BM + MA + CH > BC + CN + NA hay AB + CH > BC + CA
a: Xét ΔAMD vuông tại M và ΔAMI vuông tại M có
AM chung
MD=MI
Do đó:ΔAMD=ΔAMI
Xét ΔAND vuông tại N và ΔANK vuông tại N có
AN chung
ND=NK
Do đó: ΔAND=ΔANK
b: \(\widehat{IAK}=2\cdot\left(\widehat{DAM}+\widehat{DAN}\right)=2\cdot90^0=180^0\)
=>I,A,K thẳng hàng
c: Ta có: I,A,K thẳng hàng
mà AI=AK(=AD)
nên A là trung điểm của KI
Câu hỏi của Nguyễn Tiến Vững - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!