Cho tam giác ABC có diện tích = 180 cm2 . Hai điểm M và N thuộc cạnh CA và CB sao cho CM = 2/3 CA ; CN = 1/3 CB . Hai đoạn thẳng BM và AN cắt nhau tại K . Tính diện tích tam giác BAK
( Ghi lời giải chi tiết cho mk nhé ghi mỗi kết quả là ko tick đâu)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình cũng đang gặp bài này, có ai biết bài này kh giải chi tiết ra giùm mình với nhé
A B C M N K
a)Nối K với C
SABN = \(\frac{2}{3}\)SABC vì:
- Đáy BN = \(\frac{2}{3}\)đáy BC
- Chung đường cao từ đỉnh A xuống đáy BC
SANM = \(\frac{1}{3}\)SANC vì:
Đáy AM = \(\frac{1}{3}\)đáy AC
- Chung đường cao từ đỉnh N xuống đáy AC
SABN là:
180 : 3 x 2 = 120 (cm2)
SANC là:
180 - 120 = 60 (cm2)
SANM là:
60 : 3 = 20 (cm2)
Mà SAMNB = SABN + SANM
Vậy SAMNB là:
120 + 20 = 140 (cm2)
b) SBKN = \(\frac{2}{1}\)SNKC vì:
- Đáy BN = \(\frac{2}{1}\)đáy NC
- Chung đường cao từ đỉnh K xuống đáy BC
Mà hai tam giác này còn chung đáy KN, suy ra đường cao từ đỉnh B xuống đáy KN = \(\frac{2}{1}\)đường cao từ đỉnh C xuống đáy KN
Hai đường cao này lần lượt là đường cao của hai tam giác ABK và ACK, => SABK = \(\frac{2}{1}\)SACK
- SAMK = \(\frac{1}{3}\)SACK vì:
- Đáy AM = \(\frac{1}{3}\)đáy AC
- Chung đường cao từ đỉnh K xuống đáy AC
Ta có:
SACK = \(\frac{1}{2}\)SABK
SAMK = \(\frac{1}{3}\)SACK
=> SAMK = \(\frac{1}{3}\)x \(\frac{1}{2}=\frac{1}{6}\)SABK
SABM = \(\frac{1}{3}\)SABC vì:
- Đáy AM = \(\frac{1}{3}\)đáy AC
- Chung đường cao từ đỉnh B xuống đáy AC
S ABM là:
180 : 3 = 60 (cm2)
Ta có:
SABM = SAMK + SABK
Vậy coi SAMK là 1 phần thì SABK là 6 phần như thế, SABM là : 6 + 1 = 7 (phần như vậy)
S ABK là:
60 : 7 x 6 = \(\frac{360}{7}\)(cm2)
Đáp số: a) 140cm2
b) \(\frac{360}{7}\)cm2
a: S BMC=2/3*90=60cm2
b: S ANC=1/3*90=30cm2
=> S AMN=1/3*30=10cm2
S ABN=2/3*90=60cm2
=>S AMNB=70cm2
Cho tui tick nha
Diện tích tam giác ABN = 1/4 diện tích tam giác ABC vì có chung chiều cao nối từ A xuống N và BN = 1/4 BC
Diện tích tam giác ABN là:
64 x 1/4 = 16 (cm2 )
Diện tích tam giác BMN = 1/2 diện tích tam giác ABN vì có chung chiều cao nối từ N xuống M và BM = 1/2 BA
Diện tích tam giác BMN là:
16 x 1/2 = 8 (cm2 )
Đáp số: 8 cm2
A B C M N K
a) Xét tam giác BMC và tam giác ABC có :
- Đáy MC = 1/2 Đáy AC
- Chung chiều cao hạ từ đỉnh B
=> S tam giác BMC = 1/2 S tam giác ABC
S tam giác BMC là : 180 x 1/2 = 90 (cm2)
* Xét tam giác BAN với tam giác ABC có :
- Đáy BN = 2/3 Đáy BC
- Chung chiều cao hạ từ đỉnh A
=> S tam giác BAN = 2/3 S tam giác ABC
S tam giác BAN là : 180 x 2/3 = 120 (cm2)
*) Xét tam giác NAC và tam giác ABC có :
Đáy NC = 1/3 Đáy BC
Chung chiều cao hạ từ đỉnh A
=> S tam giác NAC = 1/3 S tam giác ABC
S tam giác NAC là : 180 x1/3 = (60 cm2)
*) Xét tam giác NAC với tam giác NAM có :
- Đáy AM = 1/2 Đáy AC
- Chung chiều cao hạ từ đỉnh N
=> S tam giác NAM = 1/2 S tam giác NAC
S tam giác NAM là : 60 x 1/2 = 30 (cm2)
S tứ giác AMNB là 120 + 30 = 150 (cm2)
b) *) Xét tam giác BAN và tam giác BAK có :
- Đáy AK = 1/2 Đáy AN
- Chung chiều cao hạ từ đỉnh B
=> S tam giác BAK = 1/2 S tam giác BAN
S tam giác BAK là : 120 x 1/2 = 60 (cm2)
Đáp số : a) BMC = 90 cm2 ; AMNB = 150 cm2
b) BAK = 60 cm2
A B C M N
Xét tam giác BMC và tam giác BCA có chung chiều cao hạ từ B xuống AC, đáy CM = 1/3 đáy CA
=> \(S_{BMC}=\frac{1}{3}.S_{BCA}=\frac{1}{3}.180=60\left(cm^2\right)\)
Xét tam giác BMC và tam giác NMC có chung chiều cao hạ từ đỉnh M xuống cạnh BC, đáy CN = 2/3 đáy CB
\(\Rightarrow S_{NMC}=\frac{2}{3}.S_{BMC}=\frac{2}{3}.60=40\left(cm^2\right)\)
\(\Rightarrow S_{AMNB}=S_{ABC}-S_{MNC}=180-40=140\left(cm^2\right)\)
=> Tỉ số giữa \(\frac{S_{AMNB}}{S_{ABC}}=\frac{140}{180}=\frac{7}{9}\)
Vậy tỉ số diện tích giữa tứ giác AMNB và tam giác ABC là 7/9