Cho tứ giác ABCD : M,N lần lượt là trung điểm của BC,AD.Gọi K,T lần lượt là giao điểm AM, BN; CM, DN
Cm SMINK = SABK + SCDT
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm của AK và BD là O
hay AK cắt BD tại O(1)
Xét ΔADB có
BQ là đường trung tuyến ứng với cạnh AD
DM là đường trung tuyến ứng với cạnh AB
BQ và DM cắt nhau tại K
Do đó: K là trọng tâm của ΔADB
Suy ra: O là trung điểm của BD
Xét ΔBCD có
BN là đường trung tuyến ứng với cạnh DC
DP là đường trung tuyến ứng với cạnh BC
BN cắt DP tại G
Do đó: G là trọng tâm của ΔBCD
Suy ra: AG là đường trung tuyến ứng với cạnh BD
mà AO là đường trung tuyến ứng với cạnh BD
và AG,AO có điểm chung là A
nên A,G,O thẳng hàng
hay CG cắt DB tại O(2)
từ (1), (2) và (3) suy ra BD,AK,CG đồng quy
a: Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành
Suy ra: DM//BN
hay DM//BK
=>BMDK là hình thang
b: Xét tứ giác BMNA có
BM//NA
BM=NA
Do đó: BMNA là hình bình hành
mà BM=BA
nên BMNA là hình thoi
Suy ra: MA vuông góc với BN tại P
Ta có: MD//BN
nên MQ//PN
Xét tứ giác AMCN có
MC//AN
MC=AN
DO đó: AMCN là hình bình hành
Suy ra: AM//CN
=>PM//NQ
Xét tứ giác PMQN có
PM//QN
PN//QM
Do đó: PMQN là hình bình hành
mà \(\widehat{MPN}=90^0\)
nên PMQN là hình chữ nhật
a: Xét ΔCAB có BP/BA=BM/BC
nên PM//AC và PM=AC/2
=>PM//CN và PM=CN
=>PMCN là hình bình hành
b: Xét tứ giác APMN có
MP//AN
MP=AN
góc NAP=90 độ
Do đó: APMN là hình chữ nhật
=>AM=PN
c: Xét tứ giác NMBP có
NM//BP
NM=BP
Do đó:NMBP là hình bình hành
=>NB cắt MP tại trung điểm của mỗi đường
=>N,I,B thẳng hàng