K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2018

a) Ta có MD = MA; BD  BA nên MB là trung trức của AD.

Vậy nên I thuộc trung trực AD hay ID = IA.

Tương tự IE = IA.

Suy ra ID = IE hay tam giác IDE là tam giác cân tại I.

Lại có IO là trung tuyến nên OI là đường cao hay \(IO\perp DE\) 

b) Ta có \(\widehat{ABC}+\widehat{ACB}=180^o-\widehat{BAC}=180^o-80^o=100^o\)

\(\Rightarrow\widehat{ADB}+\widehat{AFC}=\frac{\widehat{ABC}}{2}+\frac{\widehat{ACB}}{2}=\frac{100^o}{2}=50^o\)

\(\Rightarrow\widehat{DAB}+\widehat{EAC}=50^o\)

\(\Rightarrow\widehat{DAE}=80^o+50^o=130^o\)

Ta thấy \(\widehat{IDA}=\widehat{IAD};\widehat{IEA}=\widehat{IAE}\Rightarrow\widehat{IDA}+\widehat{IAE}=\widehat{IAD}+\widehat{IEA}=\widehat{DAE}=130^o\)

\(\Rightarrow\widehat{DIE}=360^o-130^o-130^o=100^o\)

Ta thấy ngay \(\widehat{MIN}=\widehat{MIA}+\widehat{NIA}=\frac{\widehat{DIA}}{2}+\frac{\widehat{EIA}}{2}=\frac{100^o}{2}=50^o\)

11 tháng 4 2018

Bài bạn đấy nhìn khó hiểu???

19 tháng 1 2021

nhờ bạn nào đó vẽ hình cho nha, tui ko bt vẽ.khocroi

giải 

tam giác ABC cân tại A \(\Rightarrow\)  góc ABC = góc ACB = \(\dfrac{180^o-50^o}{2}=75^o\)

❆góc ABC = \(75^o\)  \(\Rightarrow\)  góc DBA = \(180^o-75^o=105^o\)

\(\Delta DAB\)  có DB=BA  \(\Rightarrow\)  \(\Delta\) DBA cân tại B

                                \(\Rightarrow\)  góc DAB = góc ADB = \(\dfrac{180^o-105^o}{2}=32,5^o\)

❆ góc ACB = \(75^o\)  \(\Rightarrow\)  góc ACE = \(180^o-75^o=105^o\)

     \(\Delta ACE\)   có AC=CE \(\Rightarrow\)   tam giác ACE cân tại C

                                      \(\Rightarrow\)  góc CAE = góc CEA = \(\dfrac{180^o-105^o}{2}=32,5^o\)

❆ ta có : góc DAE = góc DAB + góc CAE + góc BAC 

                              = \(32,5^o+32,5^o+50^o=125^o\)

vậy góc DAE = \(125^o\)

 

19 tháng 1 2021

thank bạn

 

Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(hai cạnh tương ứng)

Ta có: ΔABD=ΔACE(cmt)

nên \(\widehat{DAB}=\widehat{EAC}\)(hai góc tương ứng)

mà \(\widehat{MAB}=\widehat{NAC}\)

Xét ΔAMB vuông tại M và ΔANC vuông tại N có 

AB=AC(ΔBAC cân tại A)

\(\widehat{MAB}=\widehat{NAC}\)(cmt)

Do đó: ΔAMB=ΔANC(cạnh huyền-góc nhọn)

Suy ra: AM=AN(hai cạnh tương ứng)

Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

Ta có: ΔAMN cân tại A(cmt)

nên \(\widehat{AMN}=\dfrac{180^0-\widehat{MAN}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)

hay \(\widehat{AMN}=\dfrac{180^0-\widehat{DAE}}{2}\)(1)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

Ta có: ΔADE cân tại A(cmt)

nên \(\widehat{ADE}=\dfrac{180^0-\widehat{DAE}}{2}\)(Số đo của một góc ở đáy trong ΔADE cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ADE}\)

mà \(\widehat{AMN}\) và \(\widehat{ADE}\) là hai góc ở vị trí đồng vị

nên MN//DE(Dấu hiệu nhận biết hai đường thẳng song song)

hay MN//BC(đpcm)

11 tháng 7 2021

11 tháng 7 2021

cắt góc sát đấy

4 tháng 4 2017

BM=5,5+3=8,5

cam=80-60=20