cho tam giác ABC vuông tại B có đường phân giác CE
a) tính BC, biết BD=9cm; CD=15cm
b) Kẻ EH\(\perp\)CD(H\(\in\)CD). Chứng minh tam giác BCE=tam giác HCB
c)So sánh BE và ED
d) Kẻ DE\(\perp\)CE. chứng minh BC, EH, FD đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Theo tính chất tia phân giác, do $BD$ là pg $\widehat{B}$, $CE$ là phân giác $\widehat{C}$ nên:
$\frac{AD}{DC}=\frac{AB}{BC}$
$\frac{AE}{EB}=\frac{AC}{BC}$
Mà $AB=AC$ (do tam giác $ABC$ cân)
$\Rightarrow \frac{AD}{DC}=\frac{AE}{EB}$
$\Rightarrow ED\parallel BC$ (theo định lý Talet)
$\Rightarrow BEDC$ là hình thang
Mà 2 góc ở đáy là $\widehat{B}, \widehat{C}$ bằng nhau do $ABC$ cân tại $A$
$\Rightarrow BEDC$ là hình thang cân.
b.
$\widehat{EDB}=\widehat{DBC}$ (so le trong)
$\widehat{DBC}=\widehat{EBD}$ (do $BD$ là pg $\widehat{B})$
$\Rightarrow \widehat{EDB}=\widehat{EBD}$
$\Rightarrow EBD$ là tam giác cân tại $E$
$\Rightarrow EB=ED=9$ (cm)
$BEDC$ là htc nên $DC=EB=9$ (cm)
Do đó:
$P_{BEDC}=ED+EB+DC+BC=9+9+9+15=42$ (cm)
a) xét tg ABD vuông tại A và tg EBD vuông tại E có:
BD là cạnh chung
góc ABD = góc DBE ( do BD là đường pg của góc B )
=> tg ABD = tg EBD ( cạnh huyền - góc nhọn )
b) Tam giác ABC vuông tại A có:
BC2 = AC2 + AB2 ( định lý Pytago )
= 122 + 92
= 144 + 81
= 225
=>BC = \(\sqrt{225}=15\)
Vậy BC = 15 cm
ai có câu trả lời giống mình thì h cho mình nhé !!!!!!!!!!!
Xin lỗi mấy bạn . Mình bị thiếu chỗ (cho tam giác ABC vuông tại A)
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
b: Xét ΔBAC có BD là phân giác
nen AD/BA=DC/BC
=>AD/3=DC/5=12/8=1,5
=>AD=4,5cm; DC=7,5cm
d: góc AID=góc BIH=90 độ-góc DBC
góc ADI=90 độ-góc ABD
mà góc DBC=góc ABD
nên góc AID=góc ADI
=>ΔAID cân tại A
Ta có: BC = BD + CD = 12 + 9 =21 (cm)
\(\Delta\)ABC vuông tại A
=> \(AB^2+AC^2=BC^2=21^2=441\)(1)
Áp dụng tính chất phân giác ta có:
\(\frac{AB}{AC}=\frac{BD}{DC}=\frac{9}{12}\)
=> \(\frac{AB^2}{AC^2}=\frac{81}{144}\)(2)
Từ (1) , (2) => \(\hept{\begin{cases}AB^2=\frac{3969}{25}\\AC^2=\frac{7056}{25}\end{cases}}\)( có rất nhiều cách để em ra kết quả này., có thể dùng tổng tỉ , hay thế ....)
=> \(\hept{\begin{cases}AB=\frac{63}{5}\\AC=\frac{84}{5}\end{cases}}\)
Bạn ơi! Đề chưa có điểm D là điểm nào?