cho hình bình hành ABCD (AB//CD). Gọi I là giao điểm của AC và BD. Biết AC=6cm; CD=1,5.AC. Tính \(\frac{AC}{BD}\)
Giúp mik với!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì tứ giác ABCD là hình bình hành nên:
- AB = CD => AM = CN
- AB // CD => AM //CN
Tứ giác AMCN có cặp cạnh AM, CN song song và bằng nhau nên nó là hình bình hành.
b) chứng minh M, O, N thẳng hàng
* AC và BD là hai đường chéo của hình bình hành ABCD nên chúng cắt nhau tại trung điểm của mỗi đường.
Do đó, O là trung điểm AC
* AC và MN là hai đường chéo của hình bình hành AMCN nên MN phải đi qua trung điểm O của AC
hay M, O, N thẳng hàng.
chuk hoc gioi
a: Xét tứ giác BMDN có
BM//ND
BM=ND
Do đó: BMDN là hình bình hành
Suy ra: MD//BN
a: AB//CD
=>\(\widehat{DAB}+\widehat{ADC}=180^0\)
mà \(\widehat{DAB}-\widehat{ADC}=60^0\)
nên \(\widehat{ADC}=\dfrac{180^0-60^0}{2}=60^0\)
b: Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)
\(\widehat{AOB}=\widehat{COD}\)
Do đó: ΔOAB đồng dạng với ΔOCD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)
=>OC=OD
OA+OC=AC
OB+OD=BD
mà OA=OB và OC=OD
nên AC=BD
=>ABCD chỉ là hình thang cân thôi chứ không là hình bình hành nha bạn
a: Xét ΔMOB vuông tại O và ΔNOD vuông tại O có
OB=OD
\(\widehat{MBO}=\widehat{NDO}\)
Do đó: ΔMOB=ΔNOD
Suy ra: OM=ON
c: Xét tứ giác MBND có
O là trung điểm của MN
O là trung điểm của BD
Do đó: MBND là hình bình hành
mà MN\(\perp\)BD
nên MBND là hình thoi
a: Xét ΔABC có
E là trung điểm của AB
F là trung điểm của BC
Do đó: EF là đường trung bình của ΔBAC
Suy ra: EF//AC và \(EF=\dfrac{AC}{2}\left(1\right)\)
Xét ΔADC có
H là trung điểm của AD
G là trung điểm của CD
Do đó: HG là đường trung bình của ΔADC
Suy ra: HG//AC và \(HG=\dfrac{AC}{2}\left(2\right)\)
Từ (1) và (2) suy ra EF//HG và EF=HG
Xét tứ giác EFGH có
EF//HG
EF=HG
Do đó: EFGH là hình bình hành