cho \(\Delta\)ABC, đường cao AH. Trên nửa mặt phẳng bờ là AC không chứa B, ve \(\Delta ACD\)sao cho AD= BC ; CD = AB. CMR: AB//CD va AH\(\perp AD\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xet tam giac ABC va tam giac CDA co
AD=BC (gt)
BC=AD(gt)
AC là cạnh chung
=>tam giac abc = tam giac cda (c.c.c)
Ma goc BAC = goc DCA (nam o vi tri so le trong )
=>AB//CD
Ta có hình vẽ:
Xét Δ CDA và Δ ABC có:
CD = AB (gt)
AC là cạnh chung
DA = BC (gt)
Do đó, Δ CDA = Δ ABC (c.c.c)
=> góc DAC = góc BCA (2 góc tương ứng)
Mà DAC và BCA là 2 góc ở vị trí so le trong nên AD // BC (đpcm)
Lại có: \(AH\perp BC\) nên \(AH\perp AD\) (đpcm)
xét tam giác ABC và tam giác CDA có AB=CD;BC=AD;AD chung
=>tam giác ABC=tam giác CDA
=>góc ACB=góc DAC(2 góc tương ứng)
mà 2 góc này có vị trí so le trong nên AB//CD
mà AH vuông góc BC nên AH vuông góc CD
Xét tam giác ABC và tam giác CDA có AB = CD; BC = AD; AC chung
\(\Rightarrow\) tam giác ABC = tam giác CDA (c.c.c)
\(\Rightarrow\) góc ACB = góc DAC (2 góc tương ứng)
mà 2 góc này có vị trí so le trong nên AB // CD
mà AH | BC nên AH | CD
Câu hỏi của Nguyễn Đức Hiếu - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo bài tương tự tại đây nhé.
Ta có hình vẽ:
Xét Δ CDA và Δ ABC có:
AD = BC (gt)
CD = AB (gt)
AC là cạnh chung
Do đó, Δ CDA = Δ ABC (c.c.c)
=> DAC = ACB (2 góc tương ứng)
Mà DAC và ACB là 2 góc ở vị trí so le trong
=> AD // BC (1)
Lại có: AH \(\perp\)BC => AH \(\perp\) AD (2)
Từ (1) và (2) => đpcm
a) Trên tia AD lấy điểm E sao cho AE = CB.
Ta có ^ACB = 90 độ - ^DAC; ^C'AE = 90 độ - ^DAC => ^ACB = ^C'AE. Chứng minh tương tự ^ABC = ^MAB'.
Ta thấy tam giác ACB và C'AE bằng nhau (c - g - c) => ^C'EA = ^ABC => ^C'EA = ^MAB' và C'E = AB => C'E = AB'.
Từ đó chứng minh tam giác C'ME và B'MA bằng nhau (g - c - g) => M là trung điểm B'C'.
b) Xét hai tam giác AC'B và AB'C là xong.
Phạm Hoàng GiangTRẦN MINH HOÀNGNgô Thu TrangThien Tu BorumShizadonAce LegonaRain Tờ Rym TeTrịnh Ánh NgọcngonhuminhNguyễn Thanh Hằng