Cho ΔABC có diện tích S, BC=a; CA=b
sao cho \(\cot A+\cot B=\dfrac{a^2+b^2}{2S}\)
Chứng minh ΔABC vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(AB=\sqrt{\dfrac{BC^2}{2}}=\sqrt{\dfrac{9a^2}{2}}=\sqrt{\dfrac{18a^2}{4}}=\dfrac{3a\sqrt{2}}{2}\)
\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{18a^2}{4}:2=\dfrac{18a^2}{8}=\dfrac{9a^2}{4}\)
Bài 1:
a: Xét ΔBAC vuông tại A có
\(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=60^0\)
Xét ΔBAC vuông tại A có
\(AB=BC\cdot\sin60^0\)
\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow CH=\dfrac{12^2}{9}=\dfrac{144}{9}=16\left(cm\right)\)
Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{12\cdot25}{2}=\dfrac{300}{2}=150\left(cm^2\right)\)
a/ Ta có
\(BC=5xBM\Rightarrow BM=\dfrac{1}{5}xBC\Rightarrow CM=BC-BM=BC-\dfrac{1}{5}xBC=\dfrac{4}{5}xBC\)
\(AN=\dfrac{3}{4}xAC\Rightarrow CN=AC-AN=AC-\dfrac{3}{4}xAC=\dfrac{1}{4}xAC\)
Hai tg AMC và tg ABC có chungg đường cao từ A->BC nên
\(\dfrac{S_{AMC}}{S_{ABC}}=\dfrac{CM}{BC}=\dfrac{4}{5}\Rightarrow S_{AMC}=\dfrac{4}{5}xS_{ABC}\)
Hai tg ACM và tg MNC có chung đường cao từ M->AC nên
\(\dfrac{S_{MNC}}{S_{AMC}}=\dfrac{CN}{AC}=\dfrac{1}{4}\Rightarrow S_{MNC}=\dfrac{1}{4}xS_{AMC}=\dfrac{1}{4}x\dfrac{4}{5}xS_{ABC}=\dfrac{1}{5}xS_{ABC}=\dfrac{1}{5}x35=7cm^2\)
b/
\(S_{AMN}=S_{AMC}-S_{MNC}=\dfrac{4}{5}xS_{ABC}-\dfrac{1}{5}xS_{ABC}=\dfrac{3}{5}xS_{ABC}\)
Ta có
\(NP=\dfrac{2}{3}xNM\Rightarrow MP=NM-NP=NM-\dfrac{2}{3}xNM=\dfrac{1}{3}xNM\)
Hai tg AMP và tg AMN có chung đường cao từ A->NM nên
\(\dfrac{S_{AMP}}{S_{AMN}}=\dfrac{MP}{NM}=\dfrac{1}{3}\Rightarrow S_{AMP}=\dfrac{1}{3}xS_{AMN}=\dfrac{1}{3}x\dfrac{3}{5}xS_{ABC}=\dfrac{1}{5}xS_{ABC}\)
Ta có
\(S_{ABM}=S_{ABC}-S_{ACM}=S_{ABC}-\dfrac{4}{5}xS_{ABC}=\dfrac{1}{5}xS_{ABC}\)
\(\Rightarrow S_{AMP}=S_{ABM}\)
Từ C kẻ đường cao CH xuống đáy AB
\(cotA+cotB=\dfrac{AH}{CH}+\dfrac{BH}{CH}=\dfrac{AB}{CH}\)
Mà \(cotA+cotB=\dfrac{a^2+b^2}{2S}=\dfrac{AC^2+BC^2}{AB.CH}\)
=> \(\dfrac{AB}{CH}=\dfrac{AC^2+BC^2}{AB.CH}\)
=> AB2 = AC2 + BC2
=> tam giác ABC vuông tại C
\(cotA+cotB=\dfrac{cosA}{sinA}+\dfrac{cosB}{sinB}=\dfrac{\dfrac{b^2+c^2-a^2}{2bc}}{\dfrac{2S}{bc}}+\dfrac{\dfrac{a^2+c^2-b^2}{2ac}}{\dfrac{2S}{ac}}=\dfrac{b^2+c^2-a^2}{4S}+\dfrac{a^2+c^2-b^2}{4S}=\dfrac{c^2}{2S}\)
Mà theo giả thiết \(cotA+cotB=\dfrac{a^2+b^2}{2S}\)
\(\Rightarrow\dfrac{a^2+b^2}{2S}=\dfrac{c^2}{2S}\Rightarrow a^2+b^2=c^2\Rightarrow\Delta ABC\) vuông tại A theo Pitago đảo