K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2023

đừng nói là lại trả lời đc rồi nha

17 tháng 8 2023

C A B M D E I K

a.

Xét tg vuông ABC có

\(AB=\sqrt{CA^2+CB^2}\) (pitago)

\(\Rightarrow AB=\sqrt{4^2+3^2}=5cm\)

\(CM=\dfrac{1}{2}AB\) ( Trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

\(\Rightarrow CM=\dfrac{1}{2}.5=2,5cm\)

b.

Xét tứ giác ACMK có

IA=IM (gt); IC=IK (gt) => ACMK là hbh (Tứ giavs có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

c.

\(AC\perp BC\Rightarrow EC\perp BC\)

\(MD\perp BC\) 

=> EC//MD (1)

\(BC\perp AC\Rightarrow DC\perp AC\)

\(ME\perp AC\)

=> DC//ME (2)

Từ (1) và (2) => ADME là hbh (Tứ giác có các cặp cạnh đối //)

Mà \(\widehat{C}=90^o\)

=> CDME là HCN (Hình bình hành có 1 góc vuông là HCN)

d.

ACMK là hbh (cmt) => AK=MC (cạnh đối hbh) (3)

Xét hình chữ nhật CDME

MC=DE (đường chéo HCN) (4)

Từ (3) và (4) => DE=AK

e.

DE=MC (cmt)

DE ngắn nhất khi MC ngắn nhất

MC ngắn nhất khi \(MC\perp AB\) (Khoảng cách nhỏ nhất từ 1 điểm đến 1 đường thẳng  chính là khoảng cách từ điểm đã cho đến điểm giao của đường thẳng vuông góc với đường thẳng cho trước đi qua điểm đã cho )

=> DE ngắn nhất khi M là giao của đường thẳng vuông góc với AB đi qua C

 

a: Ta có; ΔCAB vuông tại B

=>\(BA^2+BC^2=CA^2\)

=>\(CA^2=3^2+4^2=25\)

=>\(CA=\sqrt{25}=5\left(cm\right)\)

b: Xét ΔCBK vuông tại B và ΔCHK vuông tại H có

CK chung

\(\widehat{BCK}=\widehat{HCK}\)

Do đó: ΔCBK=ΔCHK

c: ta có: ΔCBK=ΔCHK

=>KB=KH

Xét ΔKBM vuông tại B và ΔKHA vuông tại H có

KB=KH

\(\widehat{BKM}=\widehat{HKA}\)(hai góc đối đỉnh)

Do đó: ΔKBM=ΔKHA

=>KM=KA

28 tháng 2 2022

tôi ko bt, lêu lêu

28 tháng 2 2022

?

19 tháng 6 2017

Áp dụng hệ thức lượng trong tamm giác vuông ta có :

\(CH^2=AH.BH\)

\(\Rightarrow CH=\sqrt{3.7}=\sqrt{21}\) (Cm )

Áp dụng định lí Py -ta -go vào tam giác ACH có :

BC =\(BC=\sqrt{CH^2+BH^2}\)

=\(\sqrt{\left(\sqrt{21}\right)^2}+7^2=\sqrt{70}\)

Diện tịch tam giác ABC là :

\(S_{ABC}=\frac{1}{2}.CH.AB\)

=\(\frac{1}{2}.\sqrt{21}.10=5\sqrt{21}\)

3:

góc C=90-50=40 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>4/BC=sin40

=>\(BC\simeq6,22\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)

1:

góc C=90-60=30 độ

Xét ΔABC vuông tại A có

sin B=AC/BC

=>3/BC=sin60

=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)

=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)

17 tháng 8 2023

còn câu 2 

 

Câu 17: Cho ABC có  AB = AC và  = 2   có dạng đặc biệt nào:A.  Tam giác cân                               B. Tam giác đều      C.   Tam giác vuông                          D. Tam giác vuông cânCâu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:A. 7cm                     B. 12,5cm                     C....
Đọc tiếp

Câu 17: Cho ABC có  AB = AC và  = 2   có dạng đặc biệt nào:

A.  Tam giác cân                               B. Tam giác đều      

C.   Tam giác vuông                          D. Tam giác vuông cân

Câu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:

A. 7cm                     B. 12,5cm                     C. 5cm                  D.

Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại: 

A. Đỉnh A             B. Đỉnh B             C. Đỉnh C                       D. Tất cả đều sai

Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?

A.  ABM  = ACM                                   B. ABM= AMC

C.  AMB= AMC= 900                             D. AM là tia phân giác CBA

Câu  21: Cho tam giác đều ABC độ dài cạnh là 6cm. Kẻ AH vuông góc với BC(H thuộc BC). Độ dài AH là:

          A. cm            B. 3cm                  C. cm             D. cm

Câu 22: Cho ABC= DEF. Khi đó:                             .

 A. BC = DF                                     B. AC = DF

   C. AB = DF                                   D. góc A = góc E    

Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:

A.   PQ =5cm           B. QR= 5cm            C. PR= 5cm              D.FE= 5cm                           

Câu 24. Cho tam giác MNP cân tại M, . Khi đó,

A.          B.             C.               D.

Câu 25 : Cho ABC= MNP  biết   thì:

A. MNP vuông  tại P                                                  B. MNP vuông  tại M          

C. MNP vuông  tại N                                                  D. ABC vuông tại A

1
15 tháng 3 2022

Câu 17: Cho ABC có  AB = AC và  = 2   có dạng đặc biệt nào:

A.  Tam giác cân                               B. Tam giác đều      

C.   Tam giác vuông                          D. Tam giác vuông cân

Câu 18Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:

A. 7cm                     B. 12,5cm                     C. 5cm                  D.

Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại: 

A. Đỉnh A             B. Đỉnh B             C. Đỉnh C                       D. Tất cả đều sai

Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?

A.  ABM  = ACM                                   B. ABM= AMC

C.  AMB= AMC= 900                             D. AM là tia phân giác CBA

Câu 22Cho ABC= DEF. Khi đó:                             .

 A. BC = DF                                     B. AC = DF

   C. AB = DF                                   D. góc A = góc E    

Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:

A.   PQ =5cm           B. QR= 5cm            C. PR= 5cm              D.FE= 5cm                           

a: Xét ΔACD vuông tại D và ΔABC vuông tại C có

góc A chung

=>ΔACD đồng dạng với ΔABC

b: ΔBDC vuông tại D có DE là trung tuyến

nên ED=EB

=>góc EBD=góc EDB

=>góc EDB=góc DCA