Cho tam giác ABC có góc B=600; C=400.Lấy điểm D trên AC sao cho AD=AB, gọi M là trung điểm BD. Tia AM cắt BC tại K.
a) CMR: Tam giác AMB=AMD.
b) CMR: KB=KD.
c) Tính số đo góc DKC?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAM có BA=BM và góc ABM=60 độ
nên ΔBAM đều
b: Xét ΔBAD và ΔBMD có
BA=BM
góc ABD=góc MBD
BD chung
=>ΔBAD=ΔBMD
=>góc BMD=góc BAD=90 độ
=>DM vuông góc BC
Kẻ AH vuông góc với BC
Trong tam giác vuông AHC ta có:
cosC=HC/AC⇒HC=cosC.AC=cos50.35≈22cm
⇒AH=√AC^2−HC^2=√35^2−22^2=√741cm
Trong tam giác vuông AHB ta có:
sinB=AH/AB⇒AB=AH/sinB=√741/sin60=2√247cm
⇒HB=√AB^2−AH^2=√(2√247)^2−741=√247cm
Vậy SABC=AH(HB+HC)/2=√741.(√247+22)/2≈513\(cm^2\)
1.
\(A+B+C=180^0\Rightarrow A=180^0-\left(B+C\right)=70^0\)
Kẻ đường cao BD
Trong tam giác vuông ABD:
\(cotA=\dfrac{AD}{BD}\Rightarrow AD=BD.cotA\)
Trong tam giác vuông BCD:
\(cotC=\dfrac{CD}{BD}\Rightarrow CD=BD.cotC\)
\(\Rightarrow AD+CD=BD.cotA+BD.cotC\)
\(\Rightarrow AC=BD.\left(cotA+cotC\right)\)
\(\Rightarrow BD=\dfrac{AC}{cotA+cotC}\)
\(\Rightarrow S_{ABC}=\dfrac{1}{2}BD.AC=\dfrac{1}{2}.\dfrac{AC^2}{cotA+cotC}=\dfrac{35^2}{2\left(cot70^0+cot50^0\right)}\approx509,1\left(cm^2\right)\)
a) xét tam giác ABM và tam giác ADM có
BM=MD
cạnh AM chung
AB=AD
=> 2 tam giác bằng nhau (c.c.c)
=> góc AMD= góc AMB =90độ
b) xét tam giác BMK và tam giác DMK có
BM=MD
góc DMK= góc BMK
cạnh MK chung
=> 2 tam giác bằng nhau (c.g.c)
=> BK=KD
c)vì góc C=40 độ ; góc B = 60 độ => góc A = 80 độ
vì AB = AD => tam giác ABD cân tại A
=> góc ABD = góc ADB =(180 - 80) : 2 = 50 độ
=> góc DBK = 60 - 50 = 10 độ
vì tam giác KBM = tam giác DKM => BK = KD => tam giác BDK cân tại K
=> góc KBD = góc KDB = 10 độ
áp dụng tính chất góc ngoài của tam giác vào tam giác BKD => góc DKC = 10 + 10 = 20 độ
a) Xét tam giác AMB và tam giác ABD có:
AM là cạnh chung
AB=AD (gt)
BM=MD(vì M là trung điểm của BD )
Do đó tam giác AMB=tam giác ABD (C-C-C)
b) Ta có : góc AMD =góc BMK (2 góc đối đỉnh)
góc AMB= góc DMK(2 góc đối đỉnh)
Mà góc AMB= góc AMD( tam giác AMB=tam giác AMD)
Suy ra góc BMK = góc DMK
Xét tam giác BMK và tam giác DMK có:
BM=MD(M là trung điếm của BD)
MK là cạnh chung
góc BMK =góc DMK(Chứng minh trên)
Do đó tam giác BMK=tam giác DMK (C-G-C)
Suy ra KB=KD(2 cạnh tương ứng)
c) TỰ LÀM NHÉ !