K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2017

Ta có hình vẽ sau:

A B C M H K E F

a/ Xét 2 \(\Delta\) vuông: \(\Delta BMH\)\(\Delta CMK\) có:

BM = CM (gt)

\(\widehat{HMB}=\widehat{KMC}\) (đối đỉnh)

=> \(\Delta BMH=\Delta CMK\left(ch-gn\right)\)

=> BH = CK (đpcm)

\(\widehat{MBH}=\widehat{MCK}\)

mà 2 góc này so le trong

=> BH // CK (đpcm)

b/ Vì \(\Delta BMH=\Delta CMK\)

=> MH = MK

Xét \(\Delta BMK\)\(\Delta CMH\) có:

BM = CM (gt)

\(\widehat{BMK}=\widehat{CMH}\) (đối đỉnh)

MK = MH (cmt)

=> \(\Delta BMK=\Delta CMH\left(c-g-c\right)\)

=> \(\widehat{BKM}=\widehat{CHM}\)

mà 2 góc này so le trong

=> BK // CH (đpcm)

\(\Delta BMK=\Delta CMH\) => BK = CH (đpcm)

c/ Vì BK = CH

mà EF lần lượt là trung điểm của BK và CH

=> BE = CF = KE = HF

Xét \(\Delta BEM\)\(\Delta CFM\) có:

BM = CM (gt)

\(\widehat{EBM}=\widehat{FCM}\) (so le trong do BK // CH)

BE = CF (cmt)

=> \(\Delta BEM=\Delta CFM\left(c-g-c\right)\)

=> ME = MF

=> M là trung điểm của EF

=> E, M, F thẳng hàng (đpcm)

21 tháng 2 2020

còn phần D

5 tháng 2 2017

gfhgfhfgh

5 tháng 2 2017

cho mình thời gian đến tối nay nha lát nữa mình bận

a) Xét ΔBHM vuông tại H và ΔCKM vuông tại K có 

MB=MC(M là trung điểm của BC)

\(\widehat{BMH}=\widehat{CMK}\)(hai góc đối đỉnh)

Do đó: ΔBHM=ΔCKM(cạnh huyền-góc nhọn)

⇒BH=CK(hai cạnh tương ứng)

b) Vì AB//CD(gt)

nên \(\widehat{ABM}=\widehat{DCM}\)(hai góc so le trong)

Xét ΔABM và ΔDCM có

\(\widehat{ABM}=\widehat{DCM}\)(cmt)

BM=CM(M là trung điểm của BC)

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

Do đó: ΔABM=ΔDCM(c-g-c)

⇒AM=DM(hai cạnh tương ứng)

Xét ΔAMC và ΔDMB có

AM=DM(cmt)

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB(M là trung điểm của BC)

Do đó: ΔAMC=ΔDMB(c-g-c)

\(\widehat{CAM}=\widehat{BDM}\)(hai góc tương ứng)

mà \(\widehat{CAM}\) và \(\widehat{BDM}\) là hai góc ở vị trí so le trong

nên AC//BD(Dấu hiệu nhận biết hai đường thẳng song song)

24 tháng 3 2020

A B C M K H

a)

+)Có \(\hept{\begin{cases}AM\perp BH\left(gt\right)\\CK\perp AM\left(gt\right)\end{cases}\Rightarrow}\)BH//CK

+) Xét \(\Delta BHM;\Delta CKM\)có: \(\hept{\begin{cases}\widehat{BHM}=\widehat{CKM}\left(=90^o\right)\\MC=BM\left(gt\right)\\\widehat{HMB}=\widehat{KMC}\left(đ^2\right)\end{cases}\Rightarrow\Delta BHM=\Delta CKM\left(ch-gn\right)\Rightarrow BH=CK}\)

b) 

Xét ΔHMC;ΔKMB có:

BM=MC(gt)

^HMC=^KMB (đối đỉnh)

HM=MK(do ΔBHM=ΔCKM)

=> ΔHMC=ΔKMB(cgc)

=> ^HCM=^KBM(2 góc tương ứng)

Mà : 2 góc này ở vị trí so le trong

=> BK // CH (đpcm)

Có : ΔHMC=ΔKMB(cmt)

=> BK=CH(2 cạnh tương ứng)

c) Ta có: \(\hept{\begin{cases}HF=FC\\BE=EK\end{cases}\left(gt\right)}\)

Mà BK=HC (cmt) => HF=FC =BE=EK

Xét \(\Delta BEM;\Delta FCM:\hept{\begin{cases}BM=MC\left(gt\right)\\\widehat{MBE}=\widehat{MCF}\left(slt\right)\\BE=FC\left(cmt\right)\end{cases}\Rightarrow\Delta BEM=\Delta FCM\left(cgc\right)}\)

=> EM=FM (2 cạnh tương ứng)

=> M Là trung điểm của EF

Do đó : E, ,M, F thẳng hàng

Nguồn: nguyen thi vang (h.vn)

24 tháng 3 2020

Bạn bổ sung trên hình điểm E và F nhé. Mình quên chưa thêm