Đề : Cho tam giác ABH vuông tại H , có AH= 6cm ; BH = 4cm .
a/ Tính AB .
b/ Trên tia đối của tia HB lấy điểm C sao cho HC = 9cm . Chứng minh ∆ ABC vuông.
c/ Trên tia đối của tia HC lấy điểm D sao cho HD = HA . Từ D vẽ đường thẳng song song với AH cắt AC tại E . Chứng minh AE = AB .
Bài làm
a) Xét tam giác ABH vuông tại H có:
Theo định lí Pytago có:
AB2 = AH2 + HB2
hay AB2 = 62 + 42
=> AB2 = 36 + 16
=> AB2 = 52
=> AB = \(2\sqrt{13}\) \(\approx\)7,2 ( cm )
b) Xét tam giác AHC vuông ở H có:
Theo định lí Pytago có:
AC2 = AH2 + HC2
Hay AC2 = 62 + 92
=> AC2 = 36 + 81
=> AC2 = 117
=> AC = \(3\sqrt{13}\)\(\approx\)10,8 ( cm )
Ta có: BC = 9 + 4 = 13
=> BC2 = 132 = 169
AB2 + AC2 = \(\left(2\sqrt{13}\right)^2+\left(3\sqrt{13}\right)^2=52+117=169\)
=> BC2 = AB2 + AC2
=> Tam giác ABC vuông tại A ( Theo định lí Pytago đảo )
c) Vì DE song song với AH
Theo định lí Thalets có:
\(\frac{CH}{HD}=\frac{AC}{AE}\)
hay \(\frac{9}{6}=\frac{3\sqrt{13}}{AE}\)
=> AE = \(\frac{6.3\sqrt{13}}{9}=\frac{18\sqrt{13}}{9}=2\sqrt{13}\)
Mà AB = \(2\sqrt{13}\)
=> AE = AB ( = \(2\sqrt{13}\)) ( đpcm )
\(\dfrac{1}{2}\) AB.AB là sao ạ??