Cho hình chữ nhật ABCD. Qua A kẻ đường thẳng vuông góc với BD, cắt BD ở H. Biết rằng DH = 9cm; BH = 16cm. Chu vi hình chữ nhật ABCD bằng... cm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
the hệ thức lượng trong tam giác vuông :
ah^2=dh.hb=9.16=144--->ah=12cm
suy ra được ad=15cm và ab=20cm
chu vi hcn là (15+20).2=70
a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có
góc E chung
=>ΔBDE đồng dạng với ΔDCE
b: BD=căn 8^2+6^2=10cm
BE=10^2/6=100/6=50/3cm
EC=DC^2/BC=8^2/6=32/3cm
Xét ΔEBD có CH//BD
nên CH/BD=EC/EB
=>CH/10=32/50=16/25
=>CH=160/25=6,4cm
BH=căn 10^2-6^2=8cm
=>BD=10^2/8=12,5cm
=>AD=7,5cm
S ABCD=7,5*10=75cm2
a/ Xét 2 tg vuông BDE và tg vuông DCE có
\(\widehat{DEB}\) chung
\(\widehat{DBE}=\widehat{CDE}\) (cùng phụ với \(\widehat{DEB}\) )
=> tg BDE đồng dạng với tg DCE (g.g.g)
b/ Xét tg vuông DCE có
\(DC^2=DH.DE\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu của cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Xét tg vuông DHC và tg vuông BDE có
\(\widehat{DCH}=\widehat{DEB}\) (cùng phụ với \(\widehat{CDE}\) )
=> tg DHC đồng dạng với tg BDE
\(\Rightarrow\dfrac{DH}{DB}=\dfrac{CH}{DE}\Rightarrow DH.DE=CH.DB\)
\(\Rightarrow DC^2=CH.DB\)
c/
Ta có
\(BD\perp DE;CH\perp DE\) => CH//BD (cùng vuông góc với DE)
\(\Rightarrow\dfrac{KH}{OD}=\dfrac{KC}{OB}\) (talet) \(\Rightarrow\dfrac{KH}{KC}=\dfrac{OD}{OB}\)
Mà OD=OB (trong HCN hai đường chéo cắt nhau tại trung điểm mỗi đường)
\(\Rightarrow\dfrac{KH}{KC}=\dfrac{OD}{OB}=1\Rightarrow KH=KC\) => K là trung điểm của HC
Xét tg vuông BCD có
\(DB=\sqrt{BC^2+CD^2}=\sqrt{6^2+8^2}=10cm\)
Ta có
\(DC^2=CH.DB\Rightarrow CH=\dfrac{DC^2}{DB}=\dfrac{8^2}{10}=6,4cm\)
\(\dfrac{S_{EHC}}{S_{EDB}}=\dfrac{\dfrac{EH.CH}{2}}{\dfrac{ED.DB}{2}}=\dfrac{EH.CH}{ED.DB}=k\)
Ta có
CH//DB (cmt)\(\Rightarrow\dfrac{EH}{ED}=\dfrac{CH}{DB}\)
\(\Rightarrow k=\left(\dfrac{CH}{DB}\right)^2=\left(\dfrac{6,4}{10}\right)^2=\left(\dfrac{4}{5}\right)^4\)
a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có
góc E chung
=>ΔBDE đồng dạng với ΔDCE
b: Xét ΔHDC vuông tại H và ΔDBE vuông tại D có
góc HDC=góc DBE
=>ΔHDC đồng dạng với ΔDBE
=>DH/DB=CH/DE
=>DH*DE=CB*CH=DC^2
c: DC^2=CH*DB
=>CH*10=8^2=64
=>CH=6,4cm
\(DH=\sqrt{8^2-6.4^2}=4.8\left(cm\right)\)
=>DE=8^2/4,8=40/3(cm)
=>CE=32/3(cm)
Xét ΔHCE vuông tại H và ΔCDE vuông tại C có
góc HEC chung
=>ΔHCE đồng dạng với ΔCDE
=>\(\dfrac{S_{HCE}}{S_{CDE}}=\left(\dfrac{CE}{DE}\right)^2=\left(\dfrac{32}{3}:\dfrac{40}{3}\right)^2=\left(\dfrac{4}{5}\right)^2=\dfrac{16}{25}\)
Xét \(\Delta\)ABH và \(\Delta\) DAH có
^AHB=^DHA=90(gt)
^BAH=^ADH (cùng phụ với ^DAH)
=> \(\Delta\)ABH~\(\Delta\)DAH(g.g)
=> \(\frac{AH}{DH}=\frac{BH}{AH}\)
=>\(AH^2=DH\cdot BH=9\cdot16=144\)
=> AH=12cm
Xét \(\Delta\)ADH vuông tại H(gt)
=>\(AD^2=HA^2+HD^2\) (theo dl pytago)
=> \(AD^2=9^2+12^2=225\)
=>AD=15cm
Xét \(\Delta\)AHB vuông tại A(gt)
=>\(AB^2=HA^2+HB^2\) (theo đl pytago)
=>\(AB^2=16^2+12^2=400\)
=>AB=20cm
Chu vi cua hình chữ nhật ABCD là:
(AB+AD)*2=(15+20)*2=70cm
Áp dụng hệ thức lượng trong tam giác vuông ta có:
AB^2=BH*BD <=> AB=15
AD^2=DH*BD <=> AD=20
=> chu vi hình chữ nhật là 2*(15+20) = 70 cm