Cho tam giác ABC cân tại A ( góc A < 90độ ). Kẻ BD \(\perp\) AC ; \(CE\perp AB\); BD và CE cắt nhau tại I.
a, C/minh: BD = CE
b, \(\Delta\) IBC là tam giác gì?
c, C/minh: AI vuông góc BC
d, Cho BC = 5cm ; CD = 3cm. Tính độ dài EC và AB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\Delta ABC\) cân tại A nên AB=AC (đ/n) và \(\widehat{ABC}=\widehat{ACB}\)
Xét \(\Delta EBC\) và \(\Delta DCB\) có :
\(\widehat{EBC}=\widehat{DCB}\)
BC chung
\(\widehat{BEC}=\widehat{CDB}\) (=90o)
=> \(\Delta EBC\)=\(\Delta DCB\)(cgv-gnk)
=> BD=CE( cctư) (đpcm)
b) Vì \(\Delta EBC\)=\(\Delta DCB\)nên \(\widehat{IBC}=\widehat{ICB}\)(cgtư)
Xét\(\Delta IBC\)Có :\(\widehat{IBC}=\widehat{ICB}\)=> \(\Delta IBC\)cân=> IB=IC(đ/n)
c) Gọi giao điểm của AI và BC là O
Vì \(\widehat{ABC}=\widehat{ACB}\) và \(\widehat{IBC}=\widehat{ICB}\) nên \(\widehat{ABI}=\widehat{ACI}\)
Xét \(\Delta ABI\) và \(\Delta ACI\) có :
AB=AC
\(\widehat{ABI}=\widehat{ACI}\)
IB=IC
=> \(\Delta ABI=\Delta ACI\left(c.g.c\right)\)
=> \(\widehat{BAI}=\widehat{CAI}\left(cgtư\right)\)
Xét \(\Delta ABO\) và \(\Delta ACO\) có :
AB=AC
\(\widehat{ABO}=\widehat{ACO}\)
\(\widehat{BAO}=\widehat{CAO}\)
=> \(\Delta ABO=\Delta ACO\left(c.g.c\right)\)
=> \(\widehat{BOA}=\widehat{COA}\left(cgtư\right)\)
mà \(\widehat{BOA}+\widehat{COA}=180^o\)
=> \(\widehat{BOA}=\widehat{COA}\left(=90^o\right)\)
hay AI\(\perp\)BC (đpcm)
bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi
a) Xét 2 tam giác vuông BEC và tam giác CDB có BC chung, góc ABC=góc ACB
Nên tam giác BEC = tam giác CDB
Nên BD=CE( 2 cạnh tương ứng)
b) Theo câu a ta có tam giác BEC=tam giác CDB
Nên góc ECB=góc DBC( 2 góc tương ứng
Nên tam giác BIC cân tại I
d) Ta có DC=3cm, BC=5cm.
Áp dụng định lí PI ta go ta có BD^2+ DC^2=BC^2
---> BD^2+ 9=25
---------------> BD=5cm
Mà BD= EC
Nên EC=5cm
Tính AB thì c tương tự nhé bạn
Cho tam giác ABC cân tại A( góc A< 90độ) Kẻ BD vuong góc với AC ( D thuộc AC) CE vuoogn goác với AB ( E thuộc AB ) BD và CE cắt nhau tại H. Chứng minh :BD = CEtam giác BHC cânAH lsf dduwognf trung trực của BCTrên tia BD lấy K sao cho D là trung điểm của BK. So sánh goác ECB và DKC
Cho tam giác ABC cân tại A( góc A< 90độ) Kẻ BD vuong góc với AC ( D thuộc AC) CE vuoogn goác với AB ( E thuộc AB ) BD và CE cắt nhau tại H. Chứng minh :
a: Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
\(\widehat{NAC}\) chung
Do đó: ΔAMB=ΔANC
Suy ra: AM=AN
b: Xét ΔNBC vuông tại N và ΔMCB vuông tại M có
BC chung
NC=MB
Do đó: ΔNBC=ΔMCB
Suy ra: \(\widehat{IBC}=\widehat{ICB}\)
hay ΔIBC cân tại I
=>IB=IC
Ta có: IB+IM=MB
IN+IC=NC
mà MB=NC
và IB=IC
nên IM=IN
hay ΔMIN cân tại I
c: Xét ΔNBK và ΔMCK có
NB=MC
\(\widehat{NBK}=\widehat{MCK}\)
BK=CK
Do đó: ΔNBK=ΔMCK
Suy ra: KN=KM
hayΔKMN cân tại K
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đo: ΔEBC=ΔDCB
Suy ra: CE=DB
b: Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)
nênΔIBC cân tại I
c: Ta có: AB=AC
BI=CI
Do đó: BC là đường trung trực của AI
=>BC\(\perp\)AI