Cho tam giác ABC vuông tại B , đường cao BH và AB=9 ; BC=12.
a) Tính AC ; BH
b) Chứng minh BC^2 = CH.AC
c) Vẽ đường thẳng xy bất kì qua B , từ C dựng CN và từ AC dựng AM cùng vuông góc với xy ( M và N thuộc xy). Chứng tỏ Stam giác AMB = 9/16 Stam giác BNC
B A C H x y N M 1 1 2
Xét tam giác ABC vuông tại B có
AB^2 + BC^2 = AC^2
=> AC^2 = 9^2 + 12^2 =225
=> AC= 15
Xét tam giác AHB ~( đồng dạng) tam giác ABC (g.g)vì
AHB= ABC
chung A
=> BH/AB= BC/ AC
=>BH= 7,2
b,Xét tam giác CHB ~ tam giác CBA (g.g)
=> CH/ BC=BC/AC => BC^2= CH. AC(dpcm)
c,
Ta có B1 + ABC + B2= 180*
=> B1 + B2 = 90* (1)
Xét tam giác AMB vuông tại M
=> A1 +B1 = 90* (2)
Từ (1) và (2)=> B2= A1
Xét tam giác AMB ~ tam giác BNC (g.g)
=> S AMB / S BNC = AB^2 / BC^2 = 9^2 / 12 ^2 =9/16 (dpcm)