cho tam giác ABC cân tại A . vẽ trung tuyến AH
a) CM: tam giác AHB = tam giác AHC
b) CM: góc AHB = goc AHC = 90 độ
c) cho AB=AC=13cm ; BC=10cm,hãy tính độ dài đường trung tuyến AH ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
refer
a) Vì AH là đường trung tuyến của tam giác ABC cân tại A:
nên HB=HC
Xét tam giác AHB và tam giác AHC:
có:+AB=AC( tam giác ABC cân tại A)
+HB=HC(cmt)
+AH: cạnh chung
Vậy tam giác AHB=tam giác AHC(c.c.c)
b) Vì tam giác AHB=tam giác AHC(cmt)
nên: góc AHB=góc AHC=90 độ( 2 góc tương ứng )
c) HB=HC=BC2=102=5cmHB=HC=BC2=102=5cm
Áp dụng định lí Pytago vào tam giác ABH vuông tại H:
có: AB2=AH2+BI2AB2=AH2+BI2
hay:132=AH2+52132=AH2+52
⇒AH2=132−52⇒AH2=132−52
⇔AH=√132−52=12⇔AH=132−52=12
Vậy AH=12cm
a, Xét Δ AHB và Δ AHC, có :
AH là cạnh chung
AB = AC (Δ ABC cân tại A)
HB = HC (AH là đường trung tuyến của BC)
=> Δ AHB = Δ AHC (c.c.c)
b, Xét Δ ABC cân tại A, có :
AH là đường trung tuyến
=> AH là đường cao
=> \(\widehat{AHC}=\widehat{AHB}=90^o\)
c, đề kì dzậy
a) Xét hai tam giác AHB và AHC ta có
AB = AC (gt)
\(\widehat{B}=\widehat{C}\)(gt)
BH = HC (gt)
Do đó: \(\Delta AHB=\Delta AHC\)(c-g-c)
b) Ta có: \(\Delta AHB=\Delta AHC\)(câu a)
=> \(\widehat{AHB}=\widehat{AHC}\)(cặp góc tương ứng)
Mà \(\widehat{AHB}+\widehat{AHC}=180^o\)(kề bù)
=> \(\widehat{AHB}=\widehat{AHC}=90^o\)
c) Ta có BH = HC (gt)
Mà BH + HC = BC
hay BH + HC = 10 (cm)
=> BH = HC = 5 (cm)
Áp dụng định lí Py-ta-go vào tam giác vuông ABH có
\(AB^2-BH^2=AH^2\)
\(13^2-5^2=AH^2\)
\(12^2=AH^2\)
=> AH = 12
P/s: k hộ thần =))))
a) Vì AH là đường trung tuyến của tam giác ABC cân tại A:
nên HB=HC
Xét tam giác AHB và tam giác AHC:
có:+AB=AC( tam giác ABC cân tại A)
+HB=HC(cmt)
+AH: cạnh chung
Vậy tam giác AHB=tam giác AHC(c.c.c)
b) Vì tam giác AHB=tam giác AHC(cmt)
nên: góc AHB=góc AHC=90 độ( 2 góc tương ứng )
c) \(HB=HC=\frac{BC}{2}=\frac{10}{2}=5cm\)
Áp dụng định lí Pytago vào tam giác ABH vuông tại H:
có: \(AB^2=AH^2+BI^2\)
hay:\(13^2=AH^2+5^2\)
\(\Rightarrow AH^2=13^2-5^2\)
\(\Leftrightarrow AH=\sqrt{13^2-5^2}=12\)
Vậy AH=12cm
a)
theo giả thiết ta có :
AH là đường trung tuyến \(\Rightarrow BH=HC\)
xét \(\Delta AHB\) và \(\Delta AHC\) có:
\(AB=AC\) (gt)
\(AH\) chung
\(BH=HC\) ( cmt)
\(\Rightarrow\Delta AHB=\Delta AHC\) (c.c.c)
\(\Rightarrow\widehat{AHB}=\widehat{AHC}\) (2 góc tương ứng )
b)
ta có : \(\widehat{AHB}+\widehat{AHC}=180^0\) ( kề bù )
mà \(\widehat{AHB}=\widehat{AHC}\) (theo a)
\(\Rightarrow\widehat{AHB}=\widehat{AHC}=\frac{180^0}{2}=90^0\)
c) \(BH=HC=\frac{10}{2}=5\) (cm)
xét \(\Delta AHB\perp\) tại H
áp dụng định lý py-ta-go ta có:
\(AB^2=AH^2+BH^2\)
\(13^2=AH^2+5^2\)
\(\Rightarrow AH^2=169-25=144=\sqrt{144}=12\) (cm)
ban tu ve hinh nha
a) Xet tam giac ahb ca tam giac ahc co
ab=ac(tam giac abc can tai a)
ah chung
hb=hc(t\c duong trung tuyen trong tam giac)
\(\Rightarrow\)tam giac ahb=tam giac ahc(c-c-c)
b) vi tam giac ahb=tam giac ahc nen
goc ahb=ahc(2 goc t\u) ma 2 goc nay ke bu nen ahb=ahc=1\2.180=90 do
c) ap dung dinh ly pi ta go trong tam giac ahb(goc h=90 do) co
ah^2=ab^2-hb^2
ah^2=13^2-(10\2)^2
ah^2=13^2-5^2
ah^2=169-25
ah^2=144
ah=\(\sqrt{144}\)
ah=12
k dum mk nha
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
Suy ra: BH=CH
b: Ta có: BH=CH
nên \(BH=CH=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)
Xét ΔAHB vuông tại H có
\(AB^2=AH^2+HB^2\)
hay AH=12(cm)
\(\Leftrightarrow AG=8\left(cm\right)\)
c: Xét ΔABC có
N là trung điểm của AB
M là trung điểm của AC
Do đó: NM là đường trung bình của ΔABC
Suy ra: NM//BC
a, Xét tg AHB và tg AHC, có:
AB=AC(tg cân)
góc AHB= góc AHC(=90o)
góc B= góc C(tg cân)
=> tg AHB= tg AHC(ch-gn)
b,Xét tg BMH và tg CNH, có:
góc B= góc C(tg cân)
BH=CH(2 cạnh tương ứng)
góc BMH= góc CNH(=90o)
=> tg BMH= tg CNH(ch-gn)
Xét tg AMH và tg ANH, có:
AH chung.
góc AMH= góc ANH(=90o)
MH=HN(2 cạnh tương ứng)
=> tg AMH= tg ANH(ch- cgv)
=> AM=AN(2 cạnh tương ứng)
=> tg AMN là tg cân.
c, Ta có:tg AMN cân tại A, tg ABC cân tại A nên, suy ra:
Các góc ở đáy bằng nhau: góc B= góc C= góc AMN= góc ANM.
Mà góc AMN và góc B ở vị trí đồng vị nên, suy ra:
MN // BC.
Vì AH là đường phân giác mà tam giác ABC cân tại A
=> AH là đường trung tuyến => BH = HC
Xét tam giác AHB và tam giác AHC có :
AH _ chung
BH = HC ( cmt )
AB = AC
Vậy tam giác AHB = tam giác AHC ( c.c.c )
Vì AH là đường trung tuyến => BH = BC/2 = 3 cm
và
nãy mình ấn lộn bạn thông cảm mình nhé
và AH cũng đồng thời là đường cao
Xét tam giác AHB vuông tại H
\(AB=\sqrt{AH^2+BH^2}=\sqrt{16+9}=5cm\)
=> BA = AC = 5 cm ( do tam giác ABC cân tại A )