K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4

Giúp mk vs ạ

a: Xét ΔCHB vuông tại H và ΔCBA vuông tại B có

\(\widehat{HCB}\) chung

Do đó: ΔCHB~ΔCBA

b: 

Xét ΔAHB vuông tại H và ΔABC vuông tại B có

\(\widehat{HAB}\) chung

Do đó: ΔAHB~ΔABC

=>\(\dfrac{AH}{AB}=\dfrac{AB}{AC}\)

=>\(AB^2=AH\cdot AC\)

c: ΔABC vuông tại B

=>\(BA^2+BC^2=AC^2\)

=>\(AC=\sqrt{15^2+20^2}=25\left(cm\right)\)

ΔAHB~ΔABC

=>\(\dfrac{BH}{BC}=\dfrac{BA}{AC}\)

=>\(BH=\dfrac{AB\cdot BC}{AC}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

d: Xét ΔBKH vuông tại K và ΔBHA vuông tại H có

\(\widehat{KBH}\) chung

Do đó: ΔBKH~ΔBHA

=>\(\dfrac{BK}{BH}=\dfrac{BH}{BA}\)

=>\(BH^2=BK\cdot BA\left(1\right)\)

Xét ΔBIH vuông tại I và ΔBHC vuông tại H có

\(\widehat{IBH}\) chung

Do đó: ΔBIH~ΔBHC

=>\(\dfrac{BI}{BH}=\dfrac{BH}{BC}\)

=>\(BH^2=BI\cdot BC\left(2\right)\)

Từ (1),(2) suy ra \(BK\cdot BA=BI\cdot BC\)

=>\(\dfrac{BK}{BC}=\dfrac{BI}{BA}\)

Xét ΔBKI vuông tại B và ΔBCA vuông tại B có

\(\dfrac{BK}{BC}=\dfrac{BI}{BA}\)

Do đó: ΔBKI~ΔBCA

e: ΔBCA vuông tại B

mà BM là đường trung tuyến

nên MB=MC

=>ΔMBC cân tại M

\(\widehat{NIB}+\widehat{NBI}=\widehat{MCB}+\widehat{MAB}=90^0\)

=>BM\(\perp\)IK tại N

ta có: \(BK\cdot BA=BH^2\)

=>\(BK\cdot15=12^2=144\)

=>BK=144/15=9,6(cm)

\(BI\cdot BC=BH^2\)

=>\(BI\cdot20=12^2=144\)

=>BI=7,2(cm)

Xét tứ giác BKHI có \(\widehat{BKH}=\widehat{BIH}=\widehat{KBI}=90^0\)

nên BKHI là hình chữ nhật

=>KI=BH=12(cm)

Xét ΔBIK vuông tại B có BN là đường cao

nên \(\left\{{}\begin{matrix}BN\cdot IK=BK\cdot BI\\KN\cdot KI=KB^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}BN\cdot12=7,2\cdot9,6\\KN\cdot12=9,6^2\end{matrix}\right.\)

=>BN=5,76(cm); KN=7,68(cm)

ΔBKN vuông tại N

=>\(S_{BNK}=\dfrac{1}{2}\cdot NB\cdot NK=\dfrac{1}{2}\cdot5,76\cdot7,68=22,1184\left(cm^2\right)\)

19 tháng 9 2021

\(1,\)

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)

\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)

Đề 1: 

a: Xét ΔABH vuông tại H có 

\(AB^2=AH^2+HB^2\)

hay HB=18(cm)

Xét ΔBCA vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BC=50\left(cm\right)\\HC=32\left(cm\right)\end{matrix}\right.\)

Xét ΔACH vuông tại H có 

\(AC^2=AH^2+HC^2\)

nên AC=40(cm)

b: Xét ΔAHC vuông tại H và ΔDHB vuông tại H có

\(\widehat{HAC}=\widehat{HDB}\)

Do đó: ΔAHC\(\sim\)ΔDHB

Suy ra: \(\dfrac{AC}{DB}=\dfrac{HC}{HB}\)

hay \(DB=\dfrac{32}{18}\cdot40=\dfrac{640}{9}\left(cm\right)\)

Bài 1: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=15-5,4=9,6(cm)

b) Ta có: BH+CH=BC(H nằm giữa B và C)

nên BC=1+3=4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)

25 tháng 10 2023

a: ΔABH vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA^2=15^2-9^2=144\)

=>HA=12(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(HC\cdot9=12^2=144\)
=>HC=16(cm)

b: BC=BH+CH

=16+9

=25(cm)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=25^2-15^2=400\)

=>AC=20(cm)

Xét ΔBAC có BE là phân giác

nên \(\dfrac{AE}{AB}=\dfrac{CE}{CB}\)

=>\(\dfrac{AE}{3}=\dfrac{CE}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AE}{3}=\dfrac{CE}{5}=\dfrac{AE+CE}{3+5}=\dfrac{20}{8}=2,5\)

=>AE=7,5(cm)

Ta có: \(HC\cdot BC=15\)

nên \(HC=\dfrac{15}{BC}\)

Ta có: HB+HC=BC(H nằm giữa B và C)

nên \(BC=2+\dfrac{15}{BC}\)

\(\Leftrightarrow BC^2=2BC+15\)

\(\Leftrightarrow BC^2-2BC-15=0\)

\(\Leftrightarrow\left(BC-5\right)\left(BC+3\right)=0\)

\(\Leftrightarrow BC=5\left(cm\right)\)

\(\Leftrightarrow CH=5-2=3\left(cm\right)\)

\(\Leftrightarrow AH=\sqrt{HB\cdot HC}=\sqrt{6}\left(cm\right)\)

\(\Leftrightarrow AB=\sqrt{BH\cdot BC}=\sqrt{2\cdot5}=\sqrt{10}\left(cm\right)\)

\(\Leftrightarrow AC=\sqrt{CH\cdot BC}=\sqrt{15}\left(cm\right)\)

14 tháng 9 2016

bạc có chép sai đề ko ạ

20 tháng 6 2019

Xét ΔABC vuông tại A(gt)

=>BC2=AB2+AC2(theo định lý ptago)

=>BC2=102+82=164

=>BC≈12,8

Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:

AB2=BH⋅BC⇒BH=AB2BC=8212,8=5

AC2=HC⋅BC⇒HC=AC2BC=10212,8≈7,8

Áp dụng hệ thức liên quan tới đường cao ta có:

AH2=BH⋅CH=5⋅7,8=39

⇒AH≈6,2

P.s:Theo mình là bài mình sai hoặc đúng gì ko biết

Ta có: BH-HC=5(gt)

mà BH+CH=15

nên 2BH=20

hay BH=10

Suy ra: HC=5

\(\Leftrightarrow AH=\sqrt{10\cdot5}=5\sqrt{2}\left(cm\right)\)

\(\Leftrightarrow AB=\sqrt{\left(5\sqrt{2}\right)^2+10^2}=5\sqrt{6}\left(cm\right)\)

\(\Leftrightarrow AC=\sqrt{15^2-150}=5\sqrt{3}\left(cm\right)\)

13 tháng 7 2017

A)   AB=\(5\sqrt{34}\left(cm\right)\)  \(BC=34\left(cm\right)\)   \(CH=9\left(cm\right)\)  \(AC=3\sqrt{34}\left(cm\right)\)

b)  BẠN VIẾT SAI ĐỀ Ở Í b RỒI (AB) KO THỂ NHỎ HƠN (BH) ĐƯỢC

bạn xem lại đi nha !!!

Xét ΔBAC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay AC=12(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=7,2\left(cm\right)\\BH=5,4\left(cm\right)\\CH=9,6\left(cm\right)\end{matrix}\right.\)