Cho tam giác ABC vuông tại B, đường cao BH. Cho AB = 15cm; BC= 20cm.
a) Chứng minh Tam giác CHB ∞ tam giác CBA
b) Chứng minh: A B ^ 2 =AH×AC
c) Tính độ dài AC, BH
d)Kẻ HK vuông AB tại K, HI vuông BC tại I. Chứng minh Tam giác BKI ∞ tam giác BCA
e) Kẻ trung tuyến BM của ∆ABC cắt KI tại N. Tính diện tích tam giác BKN
Giúp mk vs ạ
a: Xét ΔCHB vuông tại H và ΔCBA vuông tại B có
\(\widehat{HCB}\) chung
Do đó: ΔCHB~ΔCBA
b:
Xét ΔAHB vuông tại H và ΔABC vuông tại B có
\(\widehat{HAB}\) chung
Do đó: ΔAHB~ΔABC
=>\(\dfrac{AH}{AB}=\dfrac{AB}{AC}\)
=>\(AB^2=AH\cdot AC\)
c: ΔABC vuông tại B
=>\(BA^2+BC^2=AC^2\)
=>\(AC=\sqrt{15^2+20^2}=25\left(cm\right)\)
ΔAHB~ΔABC
=>\(\dfrac{BH}{BC}=\dfrac{BA}{AC}\)
=>\(BH=\dfrac{AB\cdot BC}{AC}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)
d: Xét ΔBKH vuông tại K và ΔBHA vuông tại H có
\(\widehat{KBH}\) chung
Do đó: ΔBKH~ΔBHA
=>\(\dfrac{BK}{BH}=\dfrac{BH}{BA}\)
=>\(BH^2=BK\cdot BA\left(1\right)\)
Xét ΔBIH vuông tại I và ΔBHC vuông tại H có
\(\widehat{IBH}\) chung
Do đó: ΔBIH~ΔBHC
=>\(\dfrac{BI}{BH}=\dfrac{BH}{BC}\)
=>\(BH^2=BI\cdot BC\left(2\right)\)
Từ (1),(2) suy ra \(BK\cdot BA=BI\cdot BC\)
=>\(\dfrac{BK}{BC}=\dfrac{BI}{BA}\)
Xét ΔBKI vuông tại B và ΔBCA vuông tại B có
\(\dfrac{BK}{BC}=\dfrac{BI}{BA}\)
Do đó: ΔBKI~ΔBCA
e: ΔBCA vuông tại B
mà BM là đường trung tuyến
nên MB=MC
=>ΔMBC cân tại M
\(\widehat{NIB}+\widehat{NBI}=\widehat{MCB}+\widehat{MAB}=90^0\)
=>BM\(\perp\)IK tại N
ta có: \(BK\cdot BA=BH^2\)
=>\(BK\cdot15=12^2=144\)
=>BK=144/15=9,6(cm)
\(BI\cdot BC=BH^2\)
=>\(BI\cdot20=12^2=144\)
=>BI=7,2(cm)
Xét tứ giác BKHI có \(\widehat{BKH}=\widehat{BIH}=\widehat{KBI}=90^0\)
nên BKHI là hình chữ nhật
=>KI=BH=12(cm)
Xét ΔBIK vuông tại B có BN là đường cao
nên \(\left\{{}\begin{matrix}BN\cdot IK=BK\cdot BI\\KN\cdot KI=KB^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}BN\cdot12=7,2\cdot9,6\\KN\cdot12=9,6^2\end{matrix}\right.\)
=>BN=5,76(cm); KN=7,68(cm)
ΔBKN vuông tại N
=>\(S_{BNK}=\dfrac{1}{2}\cdot NB\cdot NK=\dfrac{1}{2}\cdot5,76\cdot7,68=22,1184\left(cm^2\right)\)