K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 3 2022

Do ABC cân \(\Rightarrow AM\perp BC\)

Mà \(DA\perp\left(ABC\right)\Rightarrow DA\perp BC\)

\(\Rightarrow BC\perp\left(ADM\right)\Rightarrow BC\perp AH\)

\(\Rightarrow AH\perp\left(BCD\right)\)

b.

Gọi N là trung điểm AB \(\Rightarrow MN\) là đường trung bình tam giác ABC

\(\Rightarrow\left\{{}\begin{matrix}MN||AC\\MN=\dfrac{1}{2}AC=\dfrac{a}{2}\end{matrix}\right.\)

\(\Rightarrow\widehat{\left(AC;DM\right)}=\widehat{\left(MN;DM\right)}=\widehat{DMN}\)

\(DN=\sqrt{AD^2+AN^2}=\sqrt{AD^2+\left(\dfrac{AB}{2}\right)^2}=\dfrac{a\sqrt{89}}{10}\)

\(AM=\sqrt{AB^2-\left(\dfrac{BC}{2}\right)^2}=\dfrac{4a}{5}\Rightarrow DM=\sqrt{AD^2+AM^2}=\dfrac{4a\sqrt{2}}{5}\)

Định lý hàm cos cho tam giác DMN:

\(cos\widehat{DMN}=\dfrac{DM^2+MN^2-DN^2}{2DM.MN}=\dfrac{2\sqrt{2}}{5}\)

\(\Rightarrow\widehat{DMN}\approx55^033'\)

c.

M là trung điểm BC nên hiển nhiên \(G_1\) nằm trên AM và \(G_2\) nằm trên DM

Do \(G_1\) là trọng tâm ABC \(\Rightarrow\dfrac{AG_1}{AM}=\dfrac{2}{3}\Rightarrow\dfrac{MG_1}{AM}=\dfrac{1}{3}\)

Do \(G_2\) là trọng tâm DBC \(\Rightarrow\dfrac{DG_2}{DM}=\dfrac{2}{3}\Rightarrow\dfrac{MG_2}{DM}=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{MG_1}{AM}=\dfrac{MG_2}{DM}\Rightarrow G_1G_2||DA\) (Talet đảo)

Mà \(DA\perp\left(ABC\right)\Rightarrow G_1G_2\perp\left(ABC\right)\)

NV
15 tháng 3 2022

undefined

2 tháng 4 2017

Đáp án A

Gọi H là trung điểm của BC, O là tâm đường tròn ngoại tiếp tam giác ABC suy ra H là trung điểm của AO.

Ta có D H = 3. V A B C D S Δ A B C = a 3 4 .

Gọi J là tâm mặt cầu ngoại tiếp tứ diện ABCD.

Khi đó J O ⊥ A B C .  

Do J A = R ,   O A = a  nên J O = R 2 − a 2 .  

Mặt khác H O ⊥ J O ,   H O ⊥ H D  nên ta có

a 3 4 ± R 2 − a 2 2 + a 2 2 = R 2 ⇔ R = a 91 8 .

23 tháng 5 2019

Đáp án A.

12 tháng 3 2019

1 tháng 9 2018

16 tháng 12 2022

a: Xét tứ giác AHCE có

D là trung điểm chung của AC và HE

góc AHC=90 độ

Do đó: AHCE là hình chữ nhật

b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)

=>BC=2*BH=6cm

\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot4=2\cdot6=12\left(cm^2\right)\)

16 tháng 12 2022

Cm ơn nhiều nhá :))

7 tháng 8 2017

Tương tự 2B. Ta chứng minh được ABCD là hình thang vuông. Từ đó tính được diện tích ABCD là:

S A B C D = s A B C + s A C D = 1 2 A C . A B + 1 2 C A . D H = 1 2 .4.4 + 1 2 .4.2 = 12 c m 2  

(Với DH là đường cao tam giác ACD)

22 tháng 1 2019

Gọi chiều cao AH là x :

Áp dụng công thức tính diện tích tam giác ta được :

\(\frac{1}{2}\).BC.AH = 120

\(\frac{1}{2}\).20.x =120

    10x =120

       x = 12

 =) AH = 12 cm

b) Xét tam giác ABC có :

M là trung điểm của AB

 N là trung điểm của AC

=) MN là đường trung bình của tam giác ABC

=) MN // BC ; MN=\(\frac{1}{2}\)BC

Xét tứ giác BMNC có

MN // BC

=) Tứ giác BMNC là hình thanh

Giả sử MN cắt AH tại K

Xét tam giác ABH có :

M là trung điểm của AB

MK // BH

=) K là trung điểm của AH

Do K là trung điểm của AH

=) AK=KH=\(\frac{AH}{2}\)=\(\frac{12}{2}\)=6

Ta có MN=\(\frac{BC}{2}\)=10

Diện tích hình thang BMNC là

\(\frac{1}{2}\).KH.(MN+BC)= \(\frac{1}{2}\).6.(10+20)

                            = 90 cm2

22 tháng 1 2019

A B C H M N