Cho \(\Delta\)ABC có AB =AC=5cm ; BC = 8cm. Kẻ AH\(\perp\)BC. CH\(\varepsilon\)BC.
A. CMR : HB=HC
B. AH=?
C. Kẻ HD\(\perp\)AB, CD\(\varepsilon\)AB. Kẻ HE \(\perp\)AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài hình như sai rồi góc B= góc C thì tam giác ABC cân tại A nên AB=AC chứ sao lại AC-AB=2cm
Có AB=12cm , AN=8cm => \(\frac{{AN}}{{AB}} = \frac{8}{{12}} = \frac{2}{3}\)
AC=15cm, AM=10cm => \(\frac{{AM}}{{AC}} = \frac{{10}}{{15}} = \frac{2}{3}\)
=> \(\frac{{AN}}{{AB}} = \frac{{AM}}{{AC}}\)
- Xét hai tam giác ABC và tam giác ANM, có
\(\frac{{AN}}{{AB}} = \frac{{AM}}{{AC}}\), góc A chung
=> ΔABC ∽ ΔANM' (c.g.c)
giải
a, Trong tam giác ABC có: AB= 3cm( gt)
AC= 4cm ( gt)
BC = 5cm ( gt)
=> BC>AC>AB
==> Góc A > góc B > góc C ( quan hệ giữa góc và cạnh đối diện trong 1 tam giác)
b, Xét tam giác ABC có:
AB\(^2\)+ AC\(^2\)=3\(^2\)+4\(^2\)=25
BC\(^2\)=5\(^2\)= 25
==> AB\(^2\)+AC\(^2\)=BC\(^2\)
===> tam giác ABC là tam giác vuông ( vuông tại A) ( ĐL Py-ta-go đảo)
kẻ AH vuông góc với BC
Tam giác AHB vuông tại H có: AH = AB. sin B = 5 sin30o = 2,5 cm
Tam giác AHC vuông tại H có: AH = AC . sinC => AC = AH/ sinC = 2,5/ sin40o \(\approx\) 3,89 cm
\(AC=AD+DC=4+5=9\)
Ta có: \(AC^2=BC^2-AB^2\)
\(\to BC^2-AB^2=81\)
\(BD\) là đường phân giác \(\widehat{B}\)
\(\to\dfrac{BA}{AD}=\dfrac{BC}{DC}\)
\(\to\dfrac{BA}{4}=\dfrac{BC}{5}\)
\(\to\dfrac{BA^2}{16}=\dfrac{BC^2}{25}=\dfrac{BC^2-BA^2}{25-16}=\dfrac{81}{9}=9\)
\(\to\begin{cases}BA^2=144\\BC^2=225\end{cases}\)
\(\to\begin{cases}BA=12\\BC=15\end{cases}\)
Vậy \(BA=12cm, Bc=15cm\)
a. Ta có :\(AB^2+AC^2=BC^2\) nên ABC vuông tại A
nên tâm đường tròn ngoại tiếp ABC là trung điểm BC
b. khi đó R = BC/2 =13/2 cm
khoảng cách từ tâm đến AC là :
\(d=\sqrt{R^2-\frac{AC^2}{4}}=\frac{5}{2}cm\)
Bài làm:
Kẻ trung tuyến AM, CN của tam giác ABC
Vì AB = AC = 5cm => Tam giác ABC cân tại A
=> AM đồng thời là đường cao của tam giác ABC
=> AM _|_ BC
Vì M là trung điểm của BC => BM = MC = BC/2 = 4cm
Áp dụng định lý Pytago ta tính được: \(AM^2=AB^2-BM^2=5^2-4^2=9cm\)
=> AM = 3cm
=> GA = 2/3AM = 2cm ; GM = 1cm
Áp dụng Pytago lần nữa ta tính được:
\(GC^2=BG^2=BM^2+GM^2=4^2+1^2=17\)
=> \(GB=GC=\sqrt{17}cm\)
Xét \(\Delta ABD\)và \(\Delta ACD\)có:
AB=AC (GT)
\(\widehat{BAD}=\widehat{CAD}\)(GT)
AD chung
\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)
\(\Rightarrow\hept{\begin{cases}BD=CD\\\widehat{ADB}=\widehat{ADC}\end{cases}}\)
=> AD là đường trung tuyến; AD \(\perp\)BC
=> D là trung điểm BC => BD=CD= \(\frac{BC}{2}=\frac{8}{2}=4\left(cm\right)\)
Áp dụng định lý Pytago, ta tính được AD= \(\sqrt{5^2-4^2}=3\)
Ta tính được AI=\(\frac{2}{3}AD=\frac{2}{3}.3=2\left(cm\right)\); BI=\(\sqrt{BD^2+DI^2}=\sqrt{4^2+1^2}=\sqrt{17}\left(cm\right)\)
Xét tam giác ABH và tam giác ACH có : AH chung
AB = AC (gt)
góc AHB = góc AHC = 90 (gt)
=> tam giác ABH = tam giác ACH (ch-cgv)
=> HB = HC (đn)
b, HB = HC
HB + HC = BC mà BC = 8
=> HB = 8 : 2 = 4
xét tam giác ABH vuông tại H
=> AB^2 = AH^2 + HB^2 (đl Pytago)
AB = 5 ; HB = 4 (gt)
=> 5^2 = AH^2 + 4^2
=> AH^2 = 25 - 16
=> AH^2 = 9
=> AH = 3 do AH > 0
c, hỏi gì