Tam giác ABC có AB = 5 cm; BC = 6 cm và AC = 7 cm. Gọi theo thứ tự là góc ngoài tại các đỉnh A, B, C của tam giác đó. Trong các khẳng định, khẳng định nào là đúng?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔABC đồng dạng với ΔMNP
=>\(\dfrac{AB}{MN}=\dfrac{BC}{NP}=\dfrac{AC}{MP}\)
ΔABC đồng dạng với ΔMNP
=>Độ dài cạnh nhỏ nhất của ΔMNP sẽ là độ dài tương ứng với cạnh nhỏ nhất của ΔABC
mà cạnh nhỏ nhất của ΔABC là AB và cạnh tương ứng của AB trong ΔMNP là MN
nên MN=2,5cm
=>\(\dfrac{5}{2,5}=\dfrac{12}{MP}=\dfrac{13}{NP}\)
=>\(\dfrac{12}{MP}=\dfrac{13}{NP}=2\)
=>MP=12/2=6(cm); NP=13/2=6,5(cm)

bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết

Áp dụng định lí Pytago cho tam giác vuông ABC, ta có BC=13cm => R=6,5cm

6.)
Khi 2 tam giác đồng dạng với nhau thì cạnh nhỏ nhất của tam giác này sẽ tương ứng với cạnh nhỏ nhất của tam giác kia.
Theo đề:\(A'B'\)=4,5
Ta có:\(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}\)
\(\Rightarrow\)\(\frac{4,5}{3}=\frac{B'C'}{5}=\frac{C'A'}{7}\)
\(\Rightarrow\)\(B'C'=7,5cm,C'A'=10,5cm\)

Ta có: A B 2 + A C 2 = B C 2 ( 3 2 + 4 2 = 5 2 )
Suy ra, tam giác vuông tại A.
Diện tích tam giác ABC là: S = 1 2 . A B . A C = 6
Nửa chu vi tam giác: p = 3 + 4 + 5 2 = 6
Bán kính đường tròn nội tiếp của tam giác là: r = S p = 1
ĐÁP ÁN A

ΔABC đồng dạng với ΔA'B'C'
=>\(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}\)
=>\(\dfrac{A'B'}{3}=\dfrac{A'C'}{7}=\dfrac{B'C'}{5}\)
=>A'B'=4,5cm
=>\(\dfrac{A'C'}{7}=\dfrac{B'C'}{5}=\dfrac{3}{2}\)
=>A'C'=10,5cm; B'C'=7,5cm

Xét tam giác AEB và AEC có
\(\left\{{}\begin{matrix}AB=AC\\BE=EC\\AE.chung\end{matrix}\right.\Rightarrow\Delta AEB=\Delta AEC\left(c.c.c\right)\\ \Rightarrow\widehat{BAE}=\widehat{CAE}\)
Vậy ...
Đáp án C