K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
21 tháng 7 2021

Xét tam giác \(ABC\)vuông tại \(A\)đường cao \(AH\)

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{6^2}+\frac{1}{8^2}\Rightarrow AH=4,8\left(cm\right)\).

\(BC^2=AB^2+AC^2\)(định lí Pythagore) 

\(=6^2+8^2=100\)

\(\Rightarrow BC=10\left(cm\right)\)

\(HC=\frac{AC^2}{BC}=\frac{8^2}{10}=6,4\left(cm\right)\)

\(HB=BC-HC=10-6,4=3,6\left(cm\right)\)

Xét tam giác \(AHB\)vuông tại \(H\)đường cao \(HQ\)

\(AQ=\frac{AH^2}{AB}=\frac{4,8^2}{6}=3,84\left(cm\right)\)

Xét tam giác \(ACQ\)vuông tại \(A\)

\(CQ^2=AC^2+AQ^2=8^2+3,84^2\Rightarrow CQ=\frac{8\sqrt{769}}{25}\left(cm\right)\)

8 tháng 5 2023

`a)` Xét `\triangle ABC` vuông tại `A` có: `\hat{B}+\hat{C}=90^o`

      Xét `\triangle ABH` vuông tại `H` có: `\hat{B}+\hat{A_1}=90^o`

    `=>\hat{C}=\hat{A_1}`

Xét `\triangle ABC` và `\triangle HBA` có:

    `{:(\hat{C}=\hat{A_1}),(\hat{B}\text{ là góc chung}):}}=>\triangle ABC` $\backsim$ `\triangle HBA` (g-g)

`b)` Ta có: `BC=HB+HC=4+9=13(cm)`

Xét `\triangle ABC` vuông tại `A` có: `AH` là đường cao

    `@AH=\sqrt{BH.HC}=6 (cm)`

    `@AB=\sqrt{BH.BC}=2\sqrt{13}(cm)`

Ta có: `\hat{DEA}=\hat{ADH}=\hat{AEH}=90^o`

   `=>` Tứ giác `AEHD` là hcn `=>DE=AH=6(cm)`

`c)` Xét `\triangle AHB` vuông tại `H` có: `HD \bot AB=>AH^2=AD.AB`

      Xét `\triangle AHC` vuông tại `H` có: `HE \bot AC=>AH^2=AE.AC`

   `=>AD.AB=AE.AC`

loading...

8 tháng 5 2023

Cảm ơn anh nhiều yeu

8 tháng 4 2017

hình tự vẽ

a) Vì tam giác ABC vuông cân tại A nên AB=AC=15cm

Áp dụng định lí Py-ta-go cho tam giác vuông ABC ta có: AB2+AC2=BC2

<=> 152+152=BC2 <=> 2.152=BC2 <=> BC2=450 <=> BC=\(15\sqrt{2}\) (cm)

b) Diện tích tam giác ABC là: \(\frac{15.15}{2}=112,5\)(cm2)

8 tháng 4 2017

a, Do tam giác ABC vuông cân tại A nên AB=AC=15cm

Do tam giác \(ABC\)vuông tại A nên:

    \(BC^2=AB^2+AC^2\)( Theo Định lí Pytago)

            \(=15^2+15^2\)

             \(=225+225=450\)

\(\Rightarrow BC^2=\sqrt{450}\)( cm) ( BC > 0)

B, Diện tích hình tam giác vuông ABC là:

      \(\frac{1}{2}.AB.BC=\frac{1}{2}.15.\sqrt{450}=7,5.\sqrt{450}\left(cm^2\right)\)

a: Xet ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

=>BA=BH

b:

Xét ΔBAH có BA=BH

nên ΔBAH cân tại B

BA=BH

EA=EH

=>BE là trung trực của AH

c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có

BH=BA

góc HBK chung

=>ΔBHK=ΔBAC

=>BK=BC

=>BF là trung trực của CK(1)

Xét ΔEAK vuông tại A và ΔEHC vuông tại H có

EA=EH

góc AEK=góc HEC

=>ΔEAK=ΔEHC

=>EK=EC

=>E nằm trên trung trực của CK(2)

Từ (1), (2) suy ra B,E,F thẳng hàng

 Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)

16 tháng 7 2021

25/13 nha

19 tháng 1 2021

\(Pytago:\)

\(AC^2=BC^2-AB^2\)

\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-4^2}=3\left(cm\right)\)

Áp dung HTL trong tam giác vuông ABC có : 

\(AB\cdot AC=AH\cdot BC\\ \Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{3\cdot4}{5}=2.4\left(cm\right)\)

 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-4^2=9\)

hay \(AC=\sqrt{9}=3cm\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB\cdot AC=BC\cdot AH\)

\(\Leftrightarrow AH\cdot5=3\cdot4=12\)

hay AH=2,4cm

Vậy: AH=2,4cm

23 tháng 6 2021

Tam giác ABC vuông cân tại A 

=> AB = AC = 2 

Áp dụng định lý Pytago vào tam giác vuông ABC có : 

AB2 + AC2 = BC2 

<=> 22 + 22 = BC2

<=> BC2 = 8

<=> BC = \(\sqrt{8}\)cm

23 tháng 6 2021

6) Tam giác ABC vuông cân tại A 

=> AB = AC

Áp dụng định lý Pytago vào tam giác vuông ABC có : 

AB2 + AC2 = BC2 

=> 2.AB2 = BC2 (AB = AC)

=> 2.AB2 = 22

=> AB2 = 2

=> AB = AC = \(\sqrt{2}\)(cm) 

8 tháng 4 2022

8 tháng 4 2022

ủa lớp 5 lm lớp 8