Cho A=1+22+24+...+22020+22022; B=22023. Chứng minh rằng 3A và 2B là hai số tự nhiên liên tiếp.
CẦN TRC 7H SÁNG MAI Ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4A=2^2+2^4+...+2^2024
=>3A=2^2024-1
2B=2^2024
=>3A và 2B là hai số tự nhiên liên tiếp
Câu 1:
$A=(2+2^2)+(2^3+2^4)+(2^5+2^6)+....+(2^{2019}+2^{2020})$
$=2(1+2)+2^3(1+2)+2^5(1+2)+....+2^{2019}(1+2)$
$=(1+2)(2+2^3+2^5+...+2^{2019})=3(2+2^3+2^5+...+2^{2019})\vdots 3$
-----------------
$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{2018}+2^{2019}+2^{2020})$
$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{2018}(1+2+2^2)$
$=2+(1+2+2^2)(2^2+2^5+....+2^{2018})$
$=2+7(2^2+2^5+...+2^{2018})$
$\Rightarrow A$ chia $7$ dư $2$.
Câu 2:
$B=(3+3^2)+(3^3+3^4)+....+(3^{2021}+3^{2022})$
$=3(1+3)+3^3(1+3)+...+3^{2021}(1+3)$
$=(1+3)(3+3^3+...+3^{2021})=4(3+3^3+....+3^{2021})\vdots 4$
-------------------
$B=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{2020}+3^{2021}+3^{2022})$
$=3(1+3+3^2)+3^4(1+3+3^2)+....+3^{2020}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+...+3^{2020})=13(3+3^4+...+3^{2020})\vdots 13$ (đpcm)
\(A=2+2^2+2^3+...+2^{2020}+2^{2021}+2^{2022}\\=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^{2021}+2^{2022})\\=2\cdot(1+2)+2^3\cdot(1+2)+2^5\cdot(1+2)+...+2^{2021}\cdot(1+2)\\=2\cdot3+2^3\cdot3+2^5\cdot3+...+2^{2021}\cdot3\\=3\cdot(2+2^3+2^5+..+2^{2021})\)
Vì \(3\cdot\left(2+2^3+2^5+...+2^{2021}\right)⋮3\)
nên \(A⋮3\).
\(Toru\)
A=(2+22)+22(2+22)+...+22020(2+22)
A= 6.1+22.6+...+22020.6
A=6(1+22+...+22020) chia hết cho 3
vậy A chia hết cho 3
\(A=1+2+2^2+...+2^{2020}+2^{2021}\\ \Rightarrow2A=2+2^2+2^3+...+2^{2021}+2^{2022}\\ \Rightarrow2A-A=A=2^{2022}-1\)
Vậy \(A\) và \(B\) là 2 số tự nhiên liên tiếp.
a) Đặt A = 2.11 + 2.13 + ... + 2.29
= 2.(11 + 13 + 15 + ... + 29)
Đặt B = 11 + 13 + 15 + ... + 29
Số số hạng của B:
(29 - 11) : 2 + 1 = 10 (số)
A = 2.(29 + 11) . 10 : 2
= 40.10
= 400
b) (2²⁰²² + 2²⁰²¹- 2²⁰²⁰) : (2²⁰¹⁹ . 2)
= 2²⁰²⁰.(2² + 2 - 1) : 2²⁰²⁰
= 4 + 2 - 1
= 5
\(\left(x-4\right)\cdot2^{2020}=2^{2022}\)
\(\Rightarrow\left(x-4\right)\cdot2^{2020}-2^{2022}=0\)
\(\Rightarrow2^{2020}\cdot\left[\left(x-4\right)-2^2\right]=0\)
\(\Rightarrow2^{2020}\cdot\left(x-4-4\right)=0\)
\(\Rightarrow2^{2020}\cdot\left(x-8\right)=0\)
\(\Rightarrow x-8=0\)
\(\Rightarrow x=8\)
Ta có: A = 4 + 22 + 23 +24 +.....+22019 +22020
=> 2A = 8 +23 +24 + 25 +.......+22020 +22021
=> 2A - A = 22021 - 23
=> A = 22021 - 23
TK :
ta có 4A= 22 + 24 + 26 + 28 + ....+ 22024
từ đó 3A = 4A - A = 22 + 24 + .... + 22024 - 1 + 22 + .... + 22022 = 22024 - 1
mà 2B = 22024
Từ đó dễ dàng suy ra được 3A và 2B là 2 số liên tiếp.