Tìm x,y \(\in\) Z biết: \(\dfrac{-1}{3}\) < \(\dfrac{A}{36}\) <\(\dfrac{B}{18}\) <\(\dfrac{-1}{4}\) và A= x+1 ; B=2-y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+3y-2z}{\dfrac{1}{2}+3\cdot\dfrac{1}{3}-2\cdot\dfrac{1}{4}}=\dfrac{36}{1}=36\)
Do đó: x=18; y=12; z=9
a) Thay x + 3y - 2z vào biểu thức ta có:
\(\dfrac{x - 1}{3} = \dfrac{3(y + 2)}{3 . 4} = \dfrac{2(z - 2)}{2 . 3}\) = \(\dfrac{x - 1}{3} = \dfrac{3x + 6}{12} = \dfrac{2z - 4}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhua ta có:
\(\dfrac{x - 1}{3} = \dfrac{3y + 6}{12} = \dfrac{2z - 4}{6} = \dfrac{x - 1}{3}+ \dfrac{3y + 6}{12} -\dfrac{2z - 4}{6}\)
=\(\dfrac{x - 1 + 3y + 6 - 2z + 4}{3 + 12 -6} \) = \(\dfrac{(x + 3y - 2z) + ( -1 + 6 +4)}{3 + 12 - 6} \)
=\(\dfrac{36 + 9}{9}\) = 5
=> \(\dfrac{x - 1}{3} =\) 5 => x - 1 = 5.3 =15 => x = 5+1 = 6
=>
=>
Vậy ...
(Bạn dựa theo cách này và lm những bài tiếp nhé!)
\(a)\dfrac{x^2}{6}=\dfrac{36}{x}\)
\(=>x^3=36.6\)
\(=>x^3=6^3\)
\(=>x=6\)
(câu b thiếu dữ kiện)
áp dụng dãy tỉ số bằng nhau ta có
x/3=y/7=z/2=x+y+z/3+7+2=-16/12=-4/3
=>x/3=-4/3=>x=-4/3X3=-4
=>y/7=-4/3=>y=-4/3X7=-9,(3)
=>z/2=-4/3=>z=-4/3X2=-2(6)
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}\text{ và }2x-y+z=36\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau:}\)
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{2x-y+z}{2.3-5+7}=\dfrac{36}{8}=\dfrac{9}{2}\)
\(\Rightarrow x=\dfrac{9.3}{2}=\dfrac{27}{2}\)
\(y=\dfrac{9.5}{2}=\dfrac{45}{2}\)
\(z=\dfrac{9.7}{2}=\dfrac{63}{2}\)
\(-\dfrac{1}{8}< \dfrac{x}{72}\le-\dfrac{1}{36}\)
\(\Rightarrow\dfrac{-9}{72}< \dfrac{x}{72}\le-\dfrac{2}{72}\)
\(\Rightarrow x\in\left\{-8;-7;-6;-5;-4;-3;-2\right\}\)
b/ \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
\(\Rightarrow\left(\dfrac{a}{b}\right)^3=\dfrac{a}{d}\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
=> \(\left(\dfrac{a}{b}\right)^3=\left(\dfrac{a+b+c}{c+d+b}\right)^3\) (2)Từ (1) và (2)=>đpcm
d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+3y-2z}{\dfrac{1}{2}+3\cdot\dfrac{1}{3}-2\cdot\dfrac{1}{4}}=\dfrac{36}{1}=36\)
Do đó: x=18; y=12; z=9
Áp dụng t/c dtsbn ta có:
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\dfrac{1}{x+y+z}=2\Rightarrow2x+2y+2z=1\Rightarrow x+y+z=0,5\Rightarrow\left\{{}\begin{matrix}x+y=0,5-z\\y+z=0,5-x\\x+z=0,5-y\end{matrix}\right.\\ \dfrac{y+z+1}{x}=2\Rightarrow y+z+1=2x\Rightarrow0,5-x+1=2x\Rightarrow x=0,5\\ \dfrac{x+z+2}{y}=2\Rightarrow x+z+2=2y\Rightarrow0,5-y+2=2y\Rightarrow y=\dfrac{5}{6}\\ \dfrac{x+y-3}{z}=2\Rightarrow x+y-3=2z\Rightarrow0,5-z-3=2z\Rightarrow z=-\dfrac{5}{6}\)
b:
ĐKXĐ: x<>0
\(\dfrac{2}{x}+\dfrac{y}{3}=\dfrac{1}{6}\)
=>\(\dfrac{6+xy}{3x}=\dfrac{1}{6}\)
=>\(6\left(6+xy\right)=3x\)
=>\(x=2\left(6+xy\right)=12+2xy\)
=>\(x\left(1-2y\right)=12\)
mà x,y là các số nguyên
nên \(\left(x;1-2y\right)\in\left\{\left(12;1\right);\left(-12;-1\right);\left(4;3\right);\left(-4;-3\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(12;0\right);\left(-12;1\right);\left(4;-1\right);\left(-4;2\right)\right\}\)
c: ĐKXĐ: y<>-1
\(\dfrac{x}{3}+\dfrac{1}{y+1}=\dfrac{1}{6}\)
=>\(\dfrac{xy+x+3}{3\left(y+1\right)}=\dfrac{1}{6}\)
=>\(\dfrac{2\left(xy+x+3\right)}{6\left(y+1\right)}=\dfrac{y+1}{6\left(y+1\right)}\)
=>\(2xy+2x+6=y+1\)
=>\(2x\left(y+1\right)-\left(y+1\right)=-6\)
=>\(\left(2x-1\right)\left(y+1\right)=-6\)
mà x,y là các số nguyên
nên \(\left(2x-1;y+1\right)\in\left\{\left(1;-6\right);\left(-1;6\right);\left(3;-2\right);\left(-3;2\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(1;-7\right);\left(0;5\right);\left(2;-3\right);\left(-1;1\right)\right\}\)
\(-\dfrac{1}{3}< \dfrac{A}{36}< \dfrac{B}{18}< -\dfrac{1}{4}\)
<=>\(-\dfrac{12}{36}< \dfrac{A}{36}< \dfrac{2B}{36}< -\dfrac{9}{36}\)
<=> -12 < x + 1 < 2(2 - y) < -9
<=> -12 < x + 1 < 4 - 2y < -9
=> x + 1 = -11 => x = -12
4 - 2y = -10 => y = 7
Vậy (x; y) = (-12; 7)
−13<A36<B18<−14−13<A36<B18<−14
<=>−1236<A36<2B36<−936−1236<A36<2B36<−936
<=> -12 < x + 1 < 2(2 - y) < -9
<=> -12 < x + 1 < 4 - 2y < -9
=> x + 1 = -11 => x = -12
4 - 2y = -10 => y = 7
Vậy (x; y) = (-12; 7)