cho hai tập hợp khác rỗng A= (m-1;4) ; B= (2;2m+2), m thuộc R. Tìm m để A là con của B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A là tập con của B thì m-1>=-2 và 4<=2m+2 và m-1<=4 và 2m+2>=-2
=>m>=-1 và 2m+2>=4 và m<=3 và m>=-2
=>m>=-1 và m>=1 và -2<=m<=3
=>m>=1 và -2<=m<=3
=>-2<=m<=1
Để A ∪ B = A thì:
m - 5 < 2 và m + 1 ≥ 6
*) m - 5 < 2
⇔ m < 2 + 5
⇔ m < 7
*) m + 1 ≥ 6
⇔ m ≥ 6 - 1
⇔ m ≥ 5
Vậy 5 m < 7 thì A ∪ B = A
Đáp án: D
Điều kiện để tồn tại tập hợp A, B là
m - 1 < 4 - 2 < 2 m + 2 ⇔ m < 5 m > - 2 ⇔ - 2 < m < 5 A ∩ B ⊂ ( - 1 ; 3 ) ⇔ m - 1 ≥ - 1 2 m + 2 ≤ 3 ⇔ m ≥ 0 m ≤ 1 2 ⇔ 0 ≤ m ≤ 1 2
Kết hợp với điều kiện (*) ta có 0 ≤ m ≤ 1/2 là giá trị cần tìm.
Để A và B có nghĩa \(\Rightarrow\left\{{}\begin{matrix}m-1< 4\\2m+2>2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 5\\m>0\end{matrix}\right.\) (1)
Để A là tập con của B
\(\Rightarrow\left\{{}\begin{matrix}m-1\ge2\\2m+2\ge4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge3\\m\ge1\end{matrix}\right.\) \(\Rightarrow m\ge3\) (2)
Từ (1);(2) \(\Rightarrow5< m\le3\)