K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2016

Gọi bán kính của đg tròn tâm A và tâm B là r

Ta có : NB = NA (=r) => N nằm trên tia phân giác của góc xOy

và MB = MA (=r) => M nằm trên tia phân giác của góc xOy

Do đó M,N thằng hàng; mà tia phân giác luôn đi qua đỉnh của góc nên 3 điểm O,M,N thẳng hàng

10 tháng 6 2016

giúp mình vs đi @Cold Wind ,@Đinh Tuấn Việt ,

18 tháng 11 2016

a. Xét tam giác MOA và tam giác MOB có :

OM là cạnh chung

MOA = MOB ( vì ox là tia phân giác góc xOy )

OMA = OMB ( = 90 độ )

Nên tam giác MOA = tam giác MOB ( c - c - c )

b. Ta có tam giác MOA = tam giác MOB ( cmt )

Nên MA = MB

Do đó M là trung điểm của AB

Vì vậy OM là đường trung trực của AB

Nhớ tk mk nha !!!

 

18 tháng 11 2016

Xét tam giác AMO vuông tại A và tam giác BMO vuông tại B có:

AOM = BOM (OM là tia phân giác của AOB)

OM chung

=> Tam giác AMO = Tam giác BMO (cạnh huyền - góc nhọn)

=> AMO = BMO (2 góc tương ứng) => MO là tia phân giác của AMB

AM = BM (2 cạnh tương ứng) => tam giác MAB cân tại A

có MO là tia phân giác của AMB (chứng minh trên)

=> MO là đường trung trực của AB

19 tháng 3 2021

+ Xét tam giác AHO ( góc A=90°) và tam giác BHO (góc B=90°) có: OH là cạnh chung

Góc BOH=AOH

=>TAM GIÁC AHO=BHO ( Cạnh huyền góc nhọn)

=>HA=HB

a: Xét ΔOAI vuông tại A và ΔOBI vuông tại B có 

OI chung

\(\widehat{AOI}=\widehat{BOI}\)

Do đó: ΔOAI=ΔOBI

Suy ra: IA=IB

b: \(OA=\sqrt{OI^2-AI^2}=8\left(cm\right)\)

c: Xét ΔAIK vuông tại A và ΔBIM vuông tại B có

IA=IB

\(\widehat{AIK}=\widehat{BIM}\)

Do đó: ΔAIK=ΔBIM

Suy ra: AK=BM

19 tháng 3 2022

j

 

19 tháng 3 2022

j

a: Xét ΔOAI vuông tại A và ΔOBI vuông tại B có

OI chung

\(\widehat{AOI}=\widehat{BOI}\)

Do đó: ΔOAI=ΔOBI

Suy ra: IA=IB

b: \(OA=\sqrt{OI^2-IA^2}=8\left(cm\right)\)

c: Xét ΔIAK vuông tại A và ΔIBM vuông tại B có

IA=IB

\(\widehat{AIK}=\widehat{BIM}\)

Do đó: ΔIAK=ΔIBM

Suy ra: AK=BM

a: Xét ΔOAI vuông tại A và ΔOBI vuông tại B có

OI chung

góc AOI=góc BOI

=>ΔOAI=ΔOBI

=>OA=OB và IA=IB

b: OA=căn 10^2-6^2=8cm

c: Xét ΔIBM vuông tại B và ΔIAK vuông tại A có

IB=IA

góc AIK=góc BIM

=>ΔIBM=ΔIAK

d: OA+AK=OK

OB+BM=OM

mà OA=OB và AK=BM

nên OK=OM

mà IM=IK

nên OI là trung trực của MK

=>O,I,C thẳng hàng

a) Xét ΔOAN vuông tại A và ΔOBN vuông tại B có 

ON chung

\(\widehat{AON}=\widehat{BON}\)(ON là tia phân giác của \(\widehat{AOB}\))

Do đó: ΔOAN=ΔOBN(cạnh huyền-góc nhọn)

Suy ra: NA=NB(hai cạnh tương ứng)

b) Ta có: ΔOAN=ΔOBN(cmt)

nên OA=OB(hai cạnh tương ứng)

Xét ΔOAB có OA=OB(cmt)

nên ΔOAB cân tại O(Định nghĩa tam giác cân)

c) Xét ΔAND vuông tại A và ΔBNE vuông tại B có 

NA=NB(cmt)

\(\widehat{AND}=\widehat{BNE}\)(hai góc đối đỉnh)

Do đó: ΔAND=ΔBNE(cạnh góc vuông-góc nhọn kề)

Suy ra: ND=NE(hai cạnh tương ứng)

d) Ta có: ΔAND=ΔBNE(cmt)

nên AD=BE(Hai cạnh tương ứng)

Ta có: OA+AD=OD(A nằm giữa O và D)

OB+BE=OE(B nằm giữa O và E)

mà OA=OB(cmt)

và AD=BE(cmt)

nên OD=OE

Ta có: OD=OE(cmt)

nên O nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: ND=NE(cmt)

nên N nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra ON là đường trung trực của DE

hay ON⊥DE(đpcm)

28 tháng 1 2022

a. Xét △OAM và △OBM có:

\(\hat{OAM}=\hat{OBM}=90^o\)

\(OM\)  chung

\(\hat{AOM}=\hat{BOM}\) (do M thuộc tia phân giác của \(\hat{xOy}\))

\(\Rightarrow\Delta OAM=\Delta OBM\left(c.h-g.n\right)\)

\(\Rightarrow MA=MB\) (đpcm).

 

b. Từ a. \(\Rightarrow OA=OB\)

⇒ Tam giác OAB cân tại O.

 

c. Xét △BME và △AMD có:

\(\hat{MBE}=\hat{MAD}=90^o\)

\(MA=MB\left(cmt\right)\)

\(\hat{AMD}=\hat{BME}\) (đối đỉnh)

\(\Rightarrow\Delta BME=\Delta AMD\left(g.n-c.g.v\right)\)

\(\Rightarrow MD=ME\left(đpcm\right)\)

 

d. Ta có: \(OA=OB\left(cmt\right)\)\(AD=DE\) (suy ra từ c.

\(\Rightarrow OA+AD=OB+DE\)

\(\Rightarrow OD=OE\)

⇒ Tam giác ODE cân tại O.

Tam giác ODE cân tại O có OM là đường phân giác ⇒ OM cũng là đường cao.

\(\Rightarrow OM\perp DE\left(đpcm\right)\)