Cho góc nhọn xOy. A thuộc Ox ; B thuộc Oy sao cho OA=OB. Hai đg tròn tâm A và tâm B có cùng bán kính sao cho chúng cắt nhau tại 2 điểm M,N nằm trg xOy^. C/m 3 điểm O,M,N thẳng hàng
giúp mình vs ah
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét tam giác MOA và tam giác MOB có :
OM là cạnh chung
MOA = MOB ( vì ox là tia phân giác góc xOy )
OMA = OMB ( = 90 độ )
Nên tam giác MOA = tam giác MOB ( c - c - c )
b. Ta có tam giác MOA = tam giác MOB ( cmt )
Nên MA = MB
Do đó M là trung điểm của AB
Vì vậy OM là đường trung trực của AB
Nhớ tk mk nha !!!
Xét tam giác AMO vuông tại A và tam giác BMO vuông tại B có:
AOM = BOM (OM là tia phân giác của AOB)
OM chung
=> Tam giác AMO = Tam giác BMO (cạnh huyền - góc nhọn)
=> AMO = BMO (2 góc tương ứng) => MO là tia phân giác của AMB
AM = BM (2 cạnh tương ứng) => tam giác MAB cân tại A
có MO là tia phân giác của AMB (chứng minh trên)
=> MO là đường trung trực của AB
+ Xét tam giác AHO ( góc A=90°) và tam giác BHO (góc B=90°) có: OH là cạnh chung
Góc BOH=AOH
=>TAM GIÁC AHO=BHO ( Cạnh huyền góc nhọn)
=>HA=HB
a: Xét ΔOAI vuông tại A và ΔOBI vuông tại B có
OI chung
\(\widehat{AOI}=\widehat{BOI}\)
Do đó: ΔOAI=ΔOBI
Suy ra: IA=IB
b: \(OA=\sqrt{OI^2-AI^2}=8\left(cm\right)\)
c: Xét ΔAIK vuông tại A và ΔBIM vuông tại B có
IA=IB
\(\widehat{AIK}=\widehat{BIM}\)
Do đó: ΔAIK=ΔBIM
Suy ra: AK=BM
a: Xét ΔOAI vuông tại A và ΔOBI vuông tại B có
OI chung
\(\widehat{AOI}=\widehat{BOI}\)
Do đó: ΔOAI=ΔOBI
Suy ra: IA=IB
b: \(OA=\sqrt{OI^2-IA^2}=8\left(cm\right)\)
c: Xét ΔIAK vuông tại A và ΔIBM vuông tại B có
IA=IB
\(\widehat{AIK}=\widehat{BIM}\)
Do đó: ΔIAK=ΔIBM
Suy ra: AK=BM
a: Xét ΔOAI vuông tại A và ΔOBI vuông tại B có
OI chung
góc AOI=góc BOI
=>ΔOAI=ΔOBI
=>OA=OB và IA=IB
b: OA=căn 10^2-6^2=8cm
c: Xét ΔIBM vuông tại B và ΔIAK vuông tại A có
IB=IA
góc AIK=góc BIM
=>ΔIBM=ΔIAK
d: OA+AK=OK
OB+BM=OM
mà OA=OB và AK=BM
nên OK=OM
mà IM=IK
nên OI là trung trực của MK
=>O,I,C thẳng hàng
a) Xét ΔOAN vuông tại A và ΔOBN vuông tại B có
ON chung
\(\widehat{AON}=\widehat{BON}\)(ON là tia phân giác của \(\widehat{AOB}\))
Do đó: ΔOAN=ΔOBN(cạnh huyền-góc nhọn)
Suy ra: NA=NB(hai cạnh tương ứng)
b) Ta có: ΔOAN=ΔOBN(cmt)
nên OA=OB(hai cạnh tương ứng)
Xét ΔOAB có OA=OB(cmt)
nên ΔOAB cân tại O(Định nghĩa tam giác cân)
c) Xét ΔAND vuông tại A và ΔBNE vuông tại B có
NA=NB(cmt)
\(\widehat{AND}=\widehat{BNE}\)(hai góc đối đỉnh)
Do đó: ΔAND=ΔBNE(cạnh góc vuông-góc nhọn kề)
Suy ra: ND=NE(hai cạnh tương ứng)
d) Ta có: ΔAND=ΔBNE(cmt)
nên AD=BE(Hai cạnh tương ứng)
Ta có: OA+AD=OD(A nằm giữa O và D)
OB+BE=OE(B nằm giữa O và E)
mà OA=OB(cmt)
và AD=BE(cmt)
nên OD=OE
Ta có: OD=OE(cmt)
nên O nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: ND=NE(cmt)
nên N nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra ON là đường trung trực của DE
hay ON⊥DE(đpcm)
a. Xét △OAM và △OBM có:
\(\hat{OAM}=\hat{OBM}=90^o\)
\(OM\) chung
\(\hat{AOM}=\hat{BOM}\) (do M thuộc tia phân giác của \(\hat{xOy}\))
\(\Rightarrow\Delta OAM=\Delta OBM\left(c.h-g.n\right)\)
\(\Rightarrow MA=MB\) (đpcm).
b. Từ a. \(\Rightarrow OA=OB\)
⇒ Tam giác OAB cân tại O.
c. Xét △BME và △AMD có:
\(\hat{MBE}=\hat{MAD}=90^o\)
\(MA=MB\left(cmt\right)\)
\(\hat{AMD}=\hat{BME}\) (đối đỉnh)
\(\Rightarrow\Delta BME=\Delta AMD\left(g.n-c.g.v\right)\)
\(\Rightarrow MD=ME\left(đpcm\right)\)
d. Ta có: \(OA=OB\left(cmt\right)\), \(AD=DE\) (suy ra từ c.)
\(\Rightarrow OA+AD=OB+DE\)
\(\Rightarrow OD=OE\)
⇒ Tam giác ODE cân tại O.
Tam giác ODE cân tại O có OM là đường phân giác ⇒ OM cũng là đường cao.
\(\Rightarrow OM\perp DE\left(đpcm\right)\)
Gọi bán kính của đg tròn tâm A và tâm B là r
Ta có : NB = NA (=r) => N nằm trên tia phân giác của góc xOy
và MB = MA (=r) => M nằm trên tia phân giác của góc xOy
Do đó M,N thằng hàng; mà tia phân giác luôn đi qua đỉnh của góc nên 3 điểm O,M,N thẳng hàng
giúp mình vs đi @Cold Wind ,@Đinh Tuấn Việt ,