Cho A = 1 + 2 + 3 +...+ n ; B = 4n + 1. Tìm ƯCLN của A và B
* P/s : Mấy anh best toán giúp em zới !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho A = 1 + 2 + 3 +...+ n ; B = 4n + 1. Tìm ƯCLN của A và B
* P/s : Mấy anh best toán giúp em zới !!!
1) Bằng phương pháp quy nạp, dễ dàng chứng minh \(1^2+2^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\). Do đó, để \(1^2+2^2+...+n^2⋮̸5\) thì \(n\left(n+1\right)\left(2n+1\right)⋮̸5\). Điều này có nghĩa là \(n\equiv3\left(mod5\right)\) hoặc \(n\equiv1\left(mod5\right)\). Tóm lại, để \(1^2+2^2+...+n^2⋮̸5\) thì \(n\equiv3\left(mod5\right)\) hoặc \(n\equiv1\left(mod5\right)\).
2) Ta so sánh \(a^3-7a^2+4a-14\) với \(a^3+3\). Ta thấy \(\left(a^3-7a^2+4a-14\right)-\left(a^3+3\right)\) \(=-7a^2+4a-17=D\). dễ thấy với mọi \(a\inℤ\) thì \(D< 0\) (thực ra với mọi \(a\inℝ\) thì vẫn có \(D< 0\)) nên \(a^3-7a^2+4a-14< a^3+3\), vì vậy \(a^3-7a^2+4a-14⋮̸a^3+3\). Vậy, không tồn tại \(a\inℤ\) thỏa mãn ycbt.
Mình làm 2 bài này trước nhé.
P = 12 + 22 + 32 +...+n2 không chia hết cho 5
P = 1.(2-1) + 2.(3-1) + 3.(4-1)+...+n(n +1 - 1)
P = 1.2-1+ 2.3 - 2+ 3.4 - 3+...+ n(n+1) - n
P = 1.2 + 2.3 + 3.4+ ...+n(n+1) - (1+2+3+...+n)
P = n(n+1)(n+2):3 - (n+1)n:2
P = n(n+1){ \(\dfrac{n+2}{3}\) - \(\dfrac{1}{2}\)}
P = n(n+1)(\(\dfrac{2n+1}{6}\)) không chia hết cho 5
⇒ n(n+1)(2n+1) không chia hết cho 5
⇒ n không chia hết cho 5
⇒ n = 5k + 1; n = 5k + 2; n = 5k + 3; n = 5k + 4
th1: n = 5k + 1 ⇒ n + 1 = 5k + 2 không chia hết cho 5 ; 2n + 1 = 10n + 3 không chia hết cho 5 vậy n = 5k + 1 (thỏa mãn)
th2: nếu n = 5k + 2 ⇒ n + 1 = 5k + 3 không chia hết cho 5; 2n + 1 = 10k + 5 ⋮ 5 (loại)
th3: nếu n = 5k + 3 ⇒ n + 1 = 5k +4 không chia hết cho 5; 2n + 1 = 10k + 7 không chia hết cho 5 (thỏa mãn)
th4 nếu n = 5k + 4 ⇒ n + 1 = 5k + 5 ⋮ 5 (loại)
Từ những lập luận trên ta có:
P không chia hết cho 5 khi
\(\left[{}\begin{matrix}n=5k+1\\n=5k+3\end{matrix}\right.\) (n \(\in\) N)
2.a)n^5+1⋮n^3+1
⇒n^2.(n^3+1)-n^2+1⋮n^3+1
⇒1⋮n^3+1
⇒n^3+1ϵƯ(1)={1}
ta có :n^3+1=1
n^3=0
n=0
Vậy n=0
b)n^5+1⋮n^3+1
Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0
Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!
1) Ta có: \(2⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(2\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{4;2;5;1\right\}\)
Vậy: \(n\in\left\{4;2;5;1\right\}\)
2) Ta có: \(n+2⋮n-3\)
\(\Leftrightarrow n-3+5⋮n-3\)
mà \(n-3⋮n-3\)
nên \(5⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(5\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{4;2;8;-2\right\}\)
Vậy: \(n\in\left\{4;2;8;-2\right\}\)
Bài 2 :
a) C = ( n + 1 )( n + 2 )( n + 3 )( n + 4 )
<=> C = [( n + 1 ).( n + 4 )].[( n + 2 ).( n + 3 )] + 1
<=> C = ( n2 + 5n + 4 ).( n2 + 5n + 6 ) + 1
Đặt t = n2 + 5n + 5
Suy ra : C = ( t - 1 ).( t + 1 ) + 1
=> C = t2 - 1 + 1
<=> C = t2 hay C = ( n2 + 5n + 5 )2
Vì n thuộc Z => n2 + 5n + 5 thuộc Z => C là số chính phương
( đpcm )
b) E = n2 + ( n + 1 )2 + n2 ( n + 1 )2
<=> E = n2 - 2n( n + 1 ) + ( n + 1 )2 + 2n( n + 1 ) + n2( n +1 )2
<=> E = [ n - ( n + 1 )]2 + 2n( n + 1 ) + [ n( n + 1 )]2
<=> E = ( n - n - 1 )2 + 2n( n + 1 ) + [ n( n + 1 )]2
<=> E = 12 + 2.1.n( n + 1 ) + [ n( n + 1 )]2
<=> E = [ n( n + 1 ) + 1 ]2
<=> E = ( n2 + n + 1 )2
Vì n thuộc Z => n2 + n + 1 thuộc Z => E là số chính phương
( đpcm )