Cho hình bình hành ABCD. M thuộc AB, N thuộc CD sao cho AM=CN. AC cắt BD tại O. MD cắt AN tại E. MC cắt BN tại F. CMR:
a) AN=CM; AN song song CM
b) AC, BD, MN đồng quy
c) ME=NF và E, O, F thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó; AMCN là hình bình hành
Suy ra: AN//CM và AN=CM
b: Ta có: AMCN là hình bình hành
nên Hai đường chéo AC và MN cắt nhau tại trung điểm của mỗi đường(1)
Ta có: ABCD là hình bình hành
nên Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra AC,BD,MN đồng quy
c: Xét tứ giác MENF có
ME//NF
ME=NF
Do đó: MENF là hình bình hành
Suy ra: ME=NF và MN cắt EF tại trung điểm của EF
=>E,O,F thẳng hàng
a: ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔMAO và ΔNCO có
góc AOM=góc CON
OA=OC
góc oAM=góc OCN
=>ΔMAO=ΔNCO
=>AM=CN
b: AM+MB=AB
CN+ND=CD
mà AM=CN và AB=CD
nên MB=ND
Xét tứ giác MBND có
MB//ND
MB=ND
=>MBND là hbh
c: Đề sai rồi bạn
a: Ta có: AM+MB=AB
CN+ND=CD
mà AB=CD
và AM=CN
nên MB=ND
Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành
Suy ra: DM//BN
a: Sửa đề; AMCN
Xét tứ giác AMCN có
AM//CN
AM=CN
=>AMCN là hình bình hành
b:
Sửa đề: O là trung điểm của AC
AMCN là hình bình hành
=>AC cắt MN tại trung điểm của mỗi đường
mà O là trung điểm của AC
nên O là trung điểm của MN
c: Xét ΔOAI và ΔOCK có
góc OAI=góc OCK
OA=OC
góc AOI=góc COK
=>ΔOAI=ΔOCK
=>OI=OK
Xét tứ giác IMKN có
O là trung điểm chung của IK và MN
=>IMKN là hình bình hành
=>IM//NK
B1 a) Xét ∆AHD và ∆CKB có: + góc AHD = góc CKB = 90độ
+ AD = BC
+ góc ADH = góc CBK(so le trong) => ∆AHD = ∆CKB(c.g.c) => AH = CK
Xét tứ giác AHCK có AH // CK(cùng ⊥ BD) và AH = CK => AHCK là hbh.
b) Do AHCK là hình bình hành => AK // CH => AM // CN, do ABCD là hình bình hành => AD // BC => AN // BM. Xét tứ giác AMCN có AM // CH và AN // BM => AMCN là hình bình hành => AN = CM.
c) Nối A -> C,M -> N do O là trung điểm HK => O là trung điểm AC => O là trung điểm MN => O;M;N thẳng hàng (do 2 đường chéo của hbh cắt nhau tại trung điểm mỗi đường)
B2:
B3: đề sai.
B4: Kẻ EI // AB(I thuộc BC) Nối I -> F; I -> K; F -> C. => ta chứng minh được ADCI là hbh (bạn tự chứng minh) Dựa theo tính chất đối xứng ta chứng minh được: ∆FIC = ∆KIC, ∆FIC có FC = IC ( = DE) và góc C = 60độ => ∆FIC đều => ∆KIC đều => góc CIK = 60độ. Do ADCI là hbh => góc AIC = góc D = 120 độ => góc CIK + góc AIC = 60độ + 120 độ = 180độ => A;I;K thẳng hàng, mà AI // AB (cách kẻ) => AK // AB(đpcm)