Cho hình vẽ biết : BD = DE =EC. AI = ID; AK = KE I K. Diện tích tam giác AIK là 20. Tính diện tích tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBDC có
M là trung điểm của BC
E là trung điểm của DC
Do đó: ME là đường trung bình của ΔBDC
Suy ra: ME//BD và \(ME=\dfrac{BD}{2}\)
Xét ΔMAE có
D là trung điểm của AE
DI//ME
Do đó: I là trung điểm của AM
hay IA=IM
b: Xét ΔAME có
I là trung điểm của AM
D là trung điểm của AE
Do đó: ID là đường trung bình của ΔAME
Suy ra: \(ID=\dfrac{ME}{2}\)
\(\Leftrightarrow BD=4\cdot ID\)
Lời giải:
a)
Xét tam giác $BCD$ có \(BM=MC, CE=ED\Rightarrow \frac{MC}{BM}=\frac{CE}{DE}\)
Do đó theo định lý Thales đảo thì \(ME\parallel BD\Leftrightarrow ME\parallel ID\)
Ta có đpcm.
b)
Xét tam giác $AME$ có \(ID\parallel ME\) thì áp dụng định lý Thales thuận suy ra \(\frac{AI}{IM}=\frac{AD}{DE}=1\Leftrightarrow AI=IM\)
c)
Tam giác $BCD$ có \(EM\parallel BD\Rightarrow \frac{1}{2}=\frac{CM}{CB}=\frac{EM}{BD}\Rightarrow BD=2EM\)
Tam giác $AME$ có \(ID\parallel ME\Rightarrow \frac{1}{2}=\frac{AD}{AE}=\frac{ID}{ME}\Rightarrow ME=2ID\)
Từ hai điều trên suy ra
\(\frac{ID}{BD}=\frac{1}{4}\Leftrightarrow 4DI=BD=BI+ID\Rightarrow 3DI=BI=9\)
\(\Leftrightarrow DI=3 (cm)\)
bạn à mình hỏi nếu làm ý a) mà ko cần dùng định lý Thales thì như nào? mình chưa học đến định lí đó nên chưa áp dụng đc vào bài
bạn vẽ hình và làm câu a,b rồi đúng ko. Vậy mik sẽ làm cho bạn câu c nhé
c. ME là đuòng trung bình của tam giác BDC(cmt)
Suy ra ME=1/3 BD(1)
Xét tam giác AME có:
I là trung điểm của AM
D là trung điểm của AE
Suy ra DI là đường trung bình của tam giác AME
Suy ra DI=1/2 ME (2)
Từ (1) và (2) suy ra DI=1/4BD
Suy ra DI=1/4(BI+DI)
DI= 1/4BI+1/4DI
DI= 1/4DI= 1/4 BI
3/4DI=1/4BI
Suy ra DI=BI:3
DI=9:3=3(cm)
Bài này thực ra mik đuọc làm ở lớp học thêm rồi nên mik hướng dẫn cho bạn
hok tốt
Nối EM; DM. Chứng minh được EM = DM vì cùng = BC/2
+) Bài toán phụ : Nếu tam giác ABC có trung tuyến AM thì AM = BC/2
Chứng minh:
Trên tia đối của tia MA lấy D sao cho MA = MD
- Tam giác AMB = DMC ( c - g- c) vì: AM = DM; góc AMB = DMC (đối đỉnh); MB = MC
=> góc ABM = MCD ( 2 góc tương ứng) Mà 2 góc này ở vị trí so le trong nên AB // CD
Ta có: AB | AC nên CD | AC =>góc ACD = 90o
- Tam giác ABC = tam giác CDA (c- g- c) vì: chung cạnh AC; góc BAC = DCA (= 90o) ; AB = CD
=> BC = DA Mà AM = DA/2 nên AM = BC/2 (đpcm)
+) Áp dụng:
Tam giác BEC vuông tại E (do CE | AB ) có EM là trung tuyến nên EM = BC/2
Tam giác BDC vuông tại D (do BD | AC) có DM là trung tuyến nên DM = BC/2
=> EM = DM => tam giác AMD cân tại M
Lại có MN là trung tuyến (do N là trung điểm của DE) nên đồng thời là đường cao
=> MN | DE (đpcm)